• 제목/요약/키워드: Ejector-diffuser system

검색결과 49건 처리시간 0.03초

아음속/음속 이젝터의 유동에 관한 해석적 연구 (Analytical Study of the Subsonic/Sonic Ejector Flows)

  • 최보규;김희동;김덕줄
    • 한국추진공학회지
    • /
    • 제4권3호
    • /
    • pp.1-10
    • /
    • 2000
  • 본 연구에서는 아음속/음속 이젝터의 성능을 평가하고, 공학적 설계를 위한 기초적 연구의 일환으로 일차원 기체역학 이론을 이용하여 이론해석을 수행하였다. 이론해석에서는 1차노즐의 유량계수, 디퓨저의 손실계수를 도입하여, 아음속/음속 이젝터의 목면적비, 유량비, 2차정체실의 압력 등을 이젝터 압축비의 함수로 도출하였다 본 연구에서 제시된 이론해석법은 아음속/음속 이젝터의 성능을 평가하는데 유용할 뿐만 아니라 이젝터 설계를 위한 자료로 활용될 수 있다.

  • PDF

태양에너지 이용 저압 증발식 해수 담수시스템 이젝터 CFD 해석 (Analysis of the ejector for low-pressure evaporative desalination system using solar energy)

  • 황인선;주홍진;곽희열
    • 한국태양에너지학회 논문집
    • /
    • 제30권6호
    • /
    • pp.137-143
    • /
    • 2010
  • In this study, the ejector design was modeled using Fluent 6.3 of FVM(Finite Volume Method) CFD(Computational Fluid Dynamics) techniques to resolve the flow dynamics in the ejector. A vacuum system with the ejector has been widely used because of its simple construction and easy maintenance. Ejector is the main part of the desalination system, of which designs determine the efficiency of system. The effects of the ejector was investigated geometry and the operating conditions in the hydraulic characteristics. The ejector consists mainly of a nozzle, suction chamber, mixing tube(throat), diffuser and draft tube. Liquid is supplied to the ejector nozzle, the fast liquid jet produced by the nozzle entrains and the non condensable gas was sucked into the mixing tube. In the present study, the multiphase CFD modeling was carried out to determine the hydrodynamic characteristics of seawater-air ejector. Two-dimensional geometry was considered with the quadrilateral-mashing scheme. The gas suction rate increases with increasing Motive flow circulating rate.

가변형 음속 이젝터 유동에 관한 수치해석적 연구 (A Computational Study of a Variable Sonic Ejector Flow)

  • 이준희;최보규;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.526-531
    • /
    • 2003
  • A cone cylinder is used to obtain variable operation conditions of a sonic ejector-diffuser system. The cone cylinder is movable to change the ejector area ratio, thus obtaining variable mass flow rates. The present study investigates the effects of ejector throat area ratio and operating pressure ratio on the entrainment of secondary stream. The numerical simulations are based on a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier-Stokes equations. The ejector throat area is varied between 3.94 and 8.05, and the operating pressure ratio is changed from 3.0 to 9.0. The results show that the entrainment ratio and mass flux ratio become more dependent on the ejector throat area ratio, when the pressure operating ratio is low. The total pressure losses produced in the present ejector system increase with the operating pressure ratio and the ejector area ratio, but for a given operating pressure ratio, the losses are not significantly dependent on the ejector area ratio when it is larger than about 5.0.

  • PDF

연료전지 이젝터 시스템에 관한 수치해석적 연구 (A Computational Study of the Fuel-Cell Ejector System)

  • 이준희;이해동;남궁혁준;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3191-3196
    • /
    • 2007
  • The present study addresses a method to operate a fuel-cell system effectively using a recirculation ejector which recycles wasted hydrogen gas. Configuration of a recirculation ejector is changed to investigate the flow behavior through it under varying operating conditions, and how such conditions affect the fuel-cell hydrogen cycle. The numerical simulations are based on a fully implicit finite volume scheme of the axisymmetric, compressible, Reynolds-Averaged, Navier-Stokes equations for hydrogen gas, and are compared with available experimental data for validation. The results show that a hydrogen recirculation ratio is effectively controlled by a configurational alteration within the operational region in which the recirculation passage doesn't plugged by a sonic line.

  • PDF

이젝터 구동관로의 직경비와 끝단의 위치 변화에 따른 유동특성 (Flow Characteristics of Ejector Driven Pipe According to the Changes of Diameter Ratio and End Position)

  • 김노형
    • 한국유체기계학회 논문집
    • /
    • 제19권1호
    • /
    • pp.45-51
    • /
    • 2016
  • This study conducted CFD analysis on the mean velocity vector of distribution of the ejector driven pipe while changing the inlet velocity to 1 m/s at the diameter ratio of diffuser of 1:3, 1:2.25, 1:1.8 with the end position of driven pipe at 1, 1.253, 1.333, 1.467 respectively, which used $k-{\varepsilon}$/High Reynolds Number for the turbulence model, SIMPLE method for the analysis algorithm, and PIV experiment to verify the CFD analysis. As a result of the CFD analysis the optimum diameter ratio of ejector driven pipe was 1:3, the optimum end position of driven pipe was 1.333 for the diameter ratio of 1:3, 1:2.25, 1:1.8 and the PIV experiment obtained the same result as the CFD analysis. Therefore, the numerical analysis of the flow characteristics of ejector can be used for the optimum design implementation on ejector system.

2차 노즐목을 갖는 초음속 이젝터의 최적화 (Optimization of supersonic ejector)

  • 박형주;윤시경;염효원;성홍계
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.130-134
    • /
    • 2010
  • 1차 유동과 2차 유동이 일정 압력으로 혼합하는 초음속 이젝터의 설계 인자들에 대한 연구를 수행하였다. 선정된 이젝터의 설계 인자는 1)질량유량비 2)면적비 3)1차유동의 마하수 이다. 이를 위해 이젝터 유동을 1차원으로 가정하였으며 손실이 있는 경우와 이상적인 경우에 대해 이적테의 성능을 압력비의 항으로 모사하였고 요구되는 이젝터의 수축률을 계산하였다. 또, 이젝터의 최적 설계를 위해 손실을 고려한 경우와 이상적인 경우를 비교하여 작동조건에 필요한 설계점을 도출하였다.

  • PDF

초음속 증기 이젝터 시스템의 작동 특성에 관한 연구 (Study of the Operation Characteristics of the Supersonic Steam Ejector System)

  • 김희동;이준희;우선훈;최보규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.329-334
    • /
    • 2001
  • In order to investigate the operating characteristics of a supersonic steam ejector, the axisymmetric, compressible, Reynolds-averaged, Navier-Stokes computations are performed using a finite volume method. The secondary and back pressures of the ejector system with a second throat are changed to investigate their effects on the suction mass flow. Three operation modes of the steam ejector system, the critical mode, subcritical mode and back flow mode, are discussed to predict the critical suction mass flow. The present computations are validated with some experimental results. The secondary and back pressures of the supersonic steam ejector significantly affect the critical suction mass flow. The present computations predict the experimented critical mass flow with fairly good accuracy. A good correlation is obtained for the critical suction mass flow. The present results show that provided the primary nozzle configuration and secondary pressure are known, we can predict the critical mass flow with good accuracy.

  • PDF

중앙구동 이젝터의 설계변수에 따른 유동특성 (Flow Characteristics of Central-Driven Ejector with Design Parameters)

  • 박상규;양희천
    • 대한기계학회논문집B
    • /
    • 제39권8호
    • /
    • pp.645-651
    • /
    • 2015
  • 본 논문은 중앙구동 이젝터의 유량비에 미치는 설계변수의 영향에 대한 연구를 목적으로 한다. 중앙구동 이젝터의 설계변수는 구동노즐 출구 단면적 및 거리비, 디퓨저 출구 단면적비로 설정하였다. 실험장치는 가변노즐 이젝터, 전동 모터-펌프, 구동유체 저장수조, 제어판넬 그리고 고속 카메라 시스템으로 구성하였다. 유량비는 실험변수에 따라 측정되는 유입 공기량과 구동유체인 물의 유량을 이용하여 도출하였다. 유량비는 구동노즐 거리비와 혼합관 길이비가 커지면 증가하는 반면에, 구동노즐 면적비와 디퓨저 출구 면적비가 커지면 감소하였다.

수치해석을 이용한 담수장치용 이젝터의 노즐위치 변화에 따른 이젝터 유동특성 연구 (CFD Analysis on the Flow Characteristics of Ejector According to the Position Changes of Driving Nozzle for F.W.G)

  • 주홍진;정일영;윤상국;곽희열
    • 한국태양에너지학회 논문집
    • /
    • 제31권3호
    • /
    • pp.23-28
    • /
    • 2011
  • In this study, the ejector design was modeled using Fluent 6.3 of FVM(Finite Volume Method) CFD(Computational Fluid Dynamics) techniques to resolve the flow dynamics in the ejector. A vacuum system with the ejector has been widely used because of its simple construction and easy maintenance. Ejector is the main part of the desalination system, of which designs determine the efficiency of system. The effects of the ejector was investigated geometry and the operating conditions in the hydraulic characteristics. The ejector consists mainly of a nozzle, suction chamber, mixing tube (throat), diffuser and draft tube. Liquid is supplied to the ejector nozzle, the fast liquid jet produced by the nozzle entrains and the non condensable gas was sucked into the mixing tube. The multiphase CFD modeling was carried out to determine the hydrodynamic characteristics of seawater-air ejector. Condition of the simulation was varied in entrance mass flow rate (1kg/s, 1.5kg/s, 2kg/s, 2.5kg/s, 3kg/s), and position of driving nozzle was located from the central axis of the suction at -10mm, 0mm, 10mm, 20mm, 30mm.. Asaresult, suction flow velocity has the highest value in central axis of the suction.

5kW 용융탄산염 연료전지(MCFC) 이젝터 설계 및 시험 (The Ejector Design and Test for 5kW MCFC System)

  • 김범주;김도형;이정현;이성윤;김진열;강승원;임희천
    • 한국수소및신에너지학회논문집
    • /
    • 제20권1호
    • /
    • pp.31-37
    • /
    • 2009
  • An ejector is a machine utilized for mixing fluid, maintaining a vacuum, and transporting fluid. The Ejector enhances system efficiency, are easily operated, have a mechnically simple structure, and do not require a power supply. Because of these advantages, the ejector has been applied to a variety of industrial fields such as refrigerators, power plants and oil plants. In this work, an ejector was used to safely recycle anode tail gas in a 5 kW Molten Carbonate Fuel Cell system at KEPRI(Korea Electric Power Research Institute). In this system, the ejector is placed at mixing point between the anode tail gas and the cathode tail gas or the fresh air. Commercial ejectors are not designed for the actual operating conditions for our fuel cell system. A new ejector was therefore designed for use beyond conventional operating limits. In this study, the entrainment ratio is measured according to the diametrical ratio of nozzle to throat in the designed ejector. This helps to define important criteria of ejectors for MCFC recycling.