• 제목/요약/키워드: Ejector performance

검색결과 127건 처리시간 0.029초

스트러트 삽입에 의한 이젝터의 효율상승에 관한 연구 (The improvement of Ejector Performance by Inserting a Strut)

  • 신유식;이윤환;최석천;정효민;정한식
    • 설비공학논문집
    • /
    • 제15권7호
    • /
    • pp.579-585
    • /
    • 2003
  • The ejector system is used for making a vacuum in an enclosed tank. This research represents the method to improve ejector performance by inserting a strut at the center of ejector outlet. This proposed ejector system is so simple and have a low cost to improve the ejector performance. There are many kinds of method for obtaining a lower vacuum pressure. The ejector is consists of nozzle, straight pipe and outlet diffuser and we focused on the outlet diffuser for high ejector performance. The strut is located at the center of ejector outlet diffuser. As the experimental result, we compared the vacuum pressure with and without a strut and without strut, and the ejector performance showed an improvement with 40% or more than the case without strut. This means that the stable fluid low energy loss was obtained by inserting the strut.

엔진베이 환기용 이젝터시스템 개발 (Development of an Ejector System for the Engine-Bay Ventilation)

  • 임주현;김용련;전상인;장성호;이상효
    • 항공우주시스템공학회지
    • /
    • 제8권1호
    • /
    • pp.30-35
    • /
    • 2014
  • This study has been conducted to develop an ejector system applied in the aircraft engine-bay ventilation system. Tandem-Ejector was selected as a component of ventilation system because it could achieve high ventilation performance in spite of motive flow with small flow rate. Tandem-Ejector is composed of a primary nozzle and two mixing ducts ($1^{st}$ mixing duct and $2^{nd}$ mixing duct). In this study, 1-D Tandem-Ejector model has been built with conservation laws and isentropic relation for 1-D ejector sizing and performance prediction. Computational Fluid Dynamics(CFD) has been conducted to investigate ejector performance and flow characteristics in the ejector. Also, Tandem-Ejector performance tests have been conducted to obtain ejector pumping performance and to investigate stand-off (gap between primary nozzle and $1^{st}$ mixing duct inlet) effect on ejector pumping performance.

A Numerical Study on the Performance of a Two-Stage Ejector-Diffuser System

  • Kong, Fanshi;Kim, Heuy Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권5호
    • /
    • pp.548-553
    • /
    • 2015
  • The conventional ejector-diffuser system makes use of high pressure primary stream to propel the secondary stream through pure shear action for the purposes of transport or compression of fluid. It has been widely used in many industrial applications such as seawater desalination, solar refrigeration, marine engineering, etc. The present study is performed numerically to study the performance of a two-stage ejector-diffuser system. The detailed flow phenomenon of the ejector-diffuser system has been critically predicted by means of the numerical approach using compressible Reynolds averaged Navier-Stokes (RANS) equations. The axi-symmetric supersonic ejector-diffuser flow has been solved by a fully implicit finite volume scheme with a two-equation k-omega turbulence model. The numerical results are validated with existing experimental data. Detailed flow physics and their contributions on ejector performance are detected to compare both single-stage and two-stage ejectors. The performance improvement on the ejector-diffuser system is discussed in terms of the mass flux ratio and the coefficient of power.

상온 가스를 이용한 이젝터의 설계와 성능에 관한 연구 (A Study on Design and Performance of an Ejector Using Cold Gas)

  • 유이상;김태완;김민석;고영성;김선진
    • 한국추진공학회지
    • /
    • 제19권2호
    • /
    • pp.38-45
    • /
    • 2015
  • 본 연구에서는 고고도의 저압환경 구현을 목적으로 사용되는 이젝터의 설계기법을 정립하고 상온가스를 이용한 실험을 통하여 성능변수와 형상변수에 따른 이젝터 작동 특성을 관찰하였다. 유량비, 압축비, 팽창비를 성능변수로 선정하고, 간극비를 형상변수로 선정하여 실험을 수행하였다. 실험결과 이젝터의 성능을 예측할 수 있는 성능변수들의 관계를 파악하였으며, 간극비 보다는 성능변수가 이젝터의 성능에 큰 영항을 미치는 것을 확인하였다.

축대칭 환형 이젝터 제트의 내부 유동과 추력특성 (INTERNAL FLOW PROPERTIES AND THRUST CHARACTERISTICS OF AXI-SYMMETRIC ANNULAR BELL TYPE EJECTOR-JET)

  • 박근홍;권세진
    • 한국전산유체공학회지
    • /
    • 제12권2호
    • /
    • pp.46-52
    • /
    • 2007
  • An experimental and numerical investigation of the ejector-jets focusing on its geometric parameters that effect on thrust performance was carried out. The area ratio of the primary nozzle that was tested in the present study was 2.17 and 3.18, while the ratio of the length to the diameter of the duct downstream the primary nozzle inlet had values of 3.41, 6.82, and 10.23. Internal flow properties of ejector-jet were estimated by comparison experiment data and CFD analysis for basic study of ejector-jet thrust performance. For examination of thrust performance, the thrust ratios increased with increase in L/D. Especially at AR=2.17, the maximum thrust augmentation was 33 percent for the shortest L/D. It is expected that the increase of mixing duct length of ejector-jet will be helpful in a thrust performance by improving mixing efficiency.

축대칭 환형 이젝터 제트의 내부 유동과 추력특성 (INTERNAL FLOW PROPERTIES AND THRUST CHARACTERISTICS OF AXI-SYMMETRIC ANNULAR BELL TYPE EJECTOR-JET)

  • 박근홍;권세진
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 춘계 학술대회논문집
    • /
    • pp.166-170
    • /
    • 2007
  • An experimental and numerical investigation of the ejector-jets focusing on its geometric parameters that effect on thrust performance was carried out. The area ratio of the primary nozzle that was tested in the present studywas 2.17 and 3.18, while the ratio of the length to the diameter of the duct downstream the primary nozzle inlet had values of 3.41, 6.82, and 10.23. Internal flow properties of ejector-jet were estimated by comparison experiment data and CFD analysis for basic study of ejector-jet thrust performance. For examination of thrust performance, the thrust ratios increased with increase in L/D. Especially at AR=2.17, the maximum thrust augmentation was 34 percent for the shortest L/D. It is expected that the increase of mixing duct length of ejector-jet will be helpful in a thrust performance by improving mixing efficiency.

  • PDF

액체-증기 이젝터의 성능에 관한 실험적 연구 (An Experimental Study on the Performance of a Liquid-Vapor Ejector with Water)

  • 박대웅;정시영
    • 설비공학논문집
    • /
    • 제12권4호
    • /
    • pp.345-353
    • /
    • 2000
  • In this study, the performance of five ejectors has been investigated with working fluids of water and water vapor. The diameters of nozzle and mixing tube of five ejectors were 1 and 1.5(ejector A), 1 and 2(ejector B), 1 and 2.5(ejector C), 1 and 3(ejector D), 2 and 4(ejector E) in millimeters. The length of the mixing tube was 8-10 times of its diameter. For each ejector, the ratio of mass flow rate of ejected water to that of entrained water vapor, $\mu$, was evaluated in terms of evaporator pressure, mass flow rate of ejected water, and water temperature. It was found that the performance of an ejector was not stable when the ratio of diameters was too small or too large(ejector A and D) and $\mu$ was almost the same for two ejectors with the same diameter ratio(ejector B and E). It was also found that $\mu$ increased almost linearly with an increase of evaporator pressure and the ratio $\mu$ increased as water temperature decreased. As expected, $\mu$ converged to zero as the water temperature approached the evaporator temperature. Finally, a non-dimensional correlation has been developed to predict$\mu$ terms of evaporator pressure and saturation pressure of ejected water.

  • PDF

화학레이저 압력회복을 위한 축소형 이젝터의 성능변수 (Parametric Study of Subscale Ejector for Pressure Recovery of Chemical Lasers)

  • 김세훈;김형준;권세진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.135-138
    • /
    • 2002
  • High-speed ejection of burnt gases from the resonator cavity is essential for performance optimization of the chemical laser system. Additionally, to maintain the population of lasing species at a level for maximum optical power, the pressure within the cavity must be of order of 10 torr. In the present study, a small-scale ejector was designed and built for parametric study of its performance. High-pressure air was used as a motive gas. Measurements include schlieren visualization and pressure distribution trace near the ejector nozzle and along the diffuser downstream of the ejector. preliminary tests showed performance of the ejector is a function of parameters including mass flow rate and stagnation pressure of the motive gas, ejector nozzle area ratio, throat area of the diffuser downstream of the ejector.

  • PDF

신형 수이젝터 개발을 위한 실험연구 (Experimental Study of the Development of New Type Water Ejector)

  • 최현규;문수범;최순열;최순호;김경근
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.35-36
    • /
    • 2005
  • An ejector driven by a liquid is a fluid transfer equipment to be used under a poor suction condition, which means that there exists a possibility to occur a cavitation. It is a highly reliable device because it has no movable part in it, that is only a passive equipment. The ejector is an inevitably necessary one to overcome a poor pumping condition and to mix uniformly two fluids, however it has a low efficiency since it requires a pump for its operation. This study is for the development of a new-type liquid ejector with the application of a nozzle shape alteration, which maximize the suction performance of it. which provides the increased competition with the domestic industries. Also, the increased performance opens a new manufacturing method to use a commercial pipes for the production of an ejector, which is based on a trivial loss of a performance. However, this minor loss can be sufficiently compensated by the increased performance of a new-type ejector. Therefore, the developed ejector by this study can considerably reduce the manufacturing time and cost while its performance is largely increased.

  • PDF

수치해석을 이용한 액체용 Ejector 성능진단 기법 (Diagnosis of Liquid Ejector Performance with Numerical Analysis)

  • 김범신;장석원;정훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.856-860
    • /
    • 2000
  • Liquid ejector is widely used for power plant water pump, marine pump and transportation of solid materials. It has high working confidence and simple configuration. However, It is not easy to know performance degradation of ejectors in field. When the geometry of ejector is complicate, the diagnosis of faults is required more skillful method without disassemble. This paper gives numerical method to predict cause of $45^{\circ}$ slurry suction ejector performance degradation.

  • PDF