• Title/Summary/Keyword: Ejector Performance

Search Result 127, Processing Time 0.024 seconds

Design and Performance Test for a Fuel Cell Ejector to Reduce its Development Cost (개발 비용 감소를 위한 연료전지용 이젝터의 설계 및 성능평가)

  • Kim, Min-Jin;Kim, Dong-Ha;Yu, Sang-Phil;Lee, Won-Yong;Kim, Chang-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.3
    • /
    • pp.279-285
    • /
    • 2006
  • Recirculation for the unreacted fuel is necessary to improve the overall efficiency of the fuel cell system and to prevent fuel starvation since the fuel cell for a vehicle application is a closed system. In case of the automotive fuel cell, the ejector which does not require any parasitic power is good for the performance improvement and easy operation. It is essential to design the customized ejector due to the lack of the commercial ejector corresponding to the operating conditions of the fuel cell systems. In this study, the design methodology for the ejector customized to an automotive fuel cell is proposed. The model based sensitivity analysis prevents the time-consuming redesign and reduces the cost of developing ejector. As a result, the customized ejector to meet the desired performance within overall operating range has developed for the PEMFC automotive system.

Analytical Study of the Subsonic/Sonic Ejector Flows (아음속/음속 이젝터의 유동에 관한 해석적 연구)

  • 최보규;김희동;김덕줄
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.1-10
    • /
    • 2000
  • In order to predict the performance of subsonic/sonic ejector system and to provide fundamental data for a cost effective design, one dimensional gas dynamics theory was applied to the subsonic and sonic ejector systems with the second throat. In the current theoretical analyses, ejector throat area ratio, mass flow ratio and secondary stagnation pressure were derived as a function of the operating pressure ratio of the ejector, and the discharge coefficient of the primary nozzle and the loss coefficient of the diffuser were incorporated into the whole performance of the ejector system. The results of theoretical analysis can be applied to practical industrial use of subsonic and sonic gas ejector systems.

  • PDF

Computational Study of Supersonic Chevron Ejector Flows (초음속 Chevron 이젝터 유동에 대한 수치해석적 연구)

  • Kong, Fanshi;Kim, Heuy Dong;Jin, Yingzi
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.89-96
    • /
    • 2013
  • Considering the complexity and difficulty on the researching, how to enhance the performance of ejector-diffuser system effectively became a significant task. In the present study, the supersonic nozzle was redesigned using Chevrons installed at the inlet of the secondary stream of the ejector-diffuser system for the purpose of the performance improvement. A CFD method based on Fluent has been applied to simulate the supersonic flows and shock waves inside the ejector. Primary numerical analysis results show that the Chevrons get a positive effect on the ejector flows. The comparison of ejector performance with and without the Chevron was obtained and optimal number of chevron lobe is discussed to increase the performance. The ejector-diffuser system performance is discussed in terms of the entrainment ratio, pressure recovery as well as total pressure loss.

Hypersonic Engine Test Facility Operation Test : Ejector System Performance Analysis (고속추진기관 시험설비 시운전 : 이젝터시스템 성능분석)

  • Kang, Sang-Hun;Lee, Yang-Ji;Oh, Joong-Hwan;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.268-271
    • /
    • 2010
  • Hypersonic engine test facility with ejector system was tested. Ejector system was designed by revised EJSIMP code. The performance of the ejector system was predicted by numerical analysis. As a result, ejector system satisfied the facility design requirement. Based on the pressure level, the facility was successfully started at Mach 3.5 and 20km altitude condition.

  • PDF

Humidity Effect on the Hydrogen Re-circulation Ejector Performance (고습의 흡입 유체일 때 이젝터의 성능 변화)

  • JeGal, Seung;Song, Seung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2589-2593
    • /
    • 2008
  • In a fuel cell vehicle using polymer electrolyte membrane fuel cell(PEMFC), hydrogen is over-supplied to gain higher stack efficiency. So it is needed considering fuel efficiency to re-circulate hydrogen which is not reacted in stack. And to re-circulate hydrogen, a blower or an ejector is used. Ejector re-circulation system has several merits compared with blower system, for example no parasite energy, simple structure and no lubrication system. But the secondary flow of an ejector in fuel cell vehicle, has high humidity because of crossover problem in stack. Therefore in this paper, ejector is designed by 1-D modeling and CFD with the primary and secondary flow of hydrogen. And the ejector which has the primary and secondary flow of air, is designed to have the same Reynolds number and Mach number at the nozzle exit as the hydrogen ejector's. And this air ejector is tested while the humidity of the secondary flow is varied.

  • PDF

Study of the Supersonic Ejector-Diffuser System with a Mixing Guide Vane at the Inlet of Secondary Stream

  • Kong, Fanshi;Lijo, Vincent;Kim, Heuy-Dong;Jin, Yingzi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.182-186
    • /
    • 2011
  • Ejector-diffuser system has long been used in many diverse fields of engineering applications and it has advantages over other fluid machinery, because of no moving parts and structural simplicity. This system makes use of high-pressure primary stream to entrain the low-pressure secondary stream through pure shear actions between two streams. In general, the flow field in the ejector-diffuser system is highly complicated due to turbulent mixing, compressibility effects and sometimes flow unsteadiness. A fatal drawback of the ejector system is in its low efficiency. Many works have been done to improve the performance of the ejector system, but not yet satisfactory, compared with that of other fluid machinery. In the present study, a mixing guide vane was installed at the inlet of the secondary stream for the purpose of the performance improvement of the ejector system. A CFD method has been applied to simulate the supersonic flows inside the ejector-diffuser system. The present results obtained were validated with existing experimental data. The mixing guide vane effects are discussed in terms of the entrainment ratio, total pressure loss as well as pressure recovery.

  • PDF

Computations of the Supersonic Ejector Flows with the Second Throat (2차목을 가지는 초음속 이젝터 유동에 관한 수치계산)

  • Choi, Bo-Gyu;Lee, Young-Ki;Kim, Heuy-Dong;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.8
    • /
    • pp.1128-1138
    • /
    • 2000
  • Pumping action in ejector systems is generally achieved through the mixing of a high-velocity and high-energy stream with a lower-velocity and lower-energy stream within a duct. The design and performance evaluation of the ejector systems has developed as a combination of scale-model experiments, empiricism and theoretical analyses applicable only to very simplified configurations, because of the generic complexity of the flow phenomena. In order to predict the detailed performance characteristics of such systems, the flow phenomena throughout the operating regimes of the ejector system should be fully understood. This paper presents the computational results for the two-dimensional supersonic ejector system with a second throat. The numerical simulations are based on a fully implicit finite volume scheme of the compressible Reynolds-averaged Navier-Stokes equation in a domain that extends from the stagnation chamber to the diffuser exit. For a wide range of the operating pressure ratio the flow field inside the ejector system is investigated in detail. The results show that the supersonic ejector systems have an optimal throat area for the operating pressure ratio to be minimized.

STUDY ON THE PERFORMANCE OF THE SHAPE OF THE AIR-LIQUID EJECTOR DIFFUSER (기체-액체 이젝터의 디퓨저 형상에 대한 연구)

  • Jang, Jin-Woo;Sin, Won-Hyeop;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6412-6418
    • /
    • 2014
  • This paper performed a numerical study of an air-liquid ejector. An ejector is a fluid-transportation device that spouts high-pressure fluid from driving pipes using the kinetic energy of the spouted fluid and increases the pressure through the exchange of momentum with the surrounding gases of the lower pressure. The air-liquid ejector was investigated through steady three-dimensional multiphase CFD analysis using commercial software ANSYS-CFX 14.0. Water as the primary fluid is driven through the driving nozzle and air is ejected as the second gas instead of ozone in real applications. The difference in performance according to the shape of the diffuser of the ejector was examined. The results provide deep insight into the influence of various factors on the performance of the air-liquid ejector. The proposed numerical model will be very helpful for further design optimization of the air-liquid ejectors.

A Study on Ejector Performance Characteristics by Ejector Geometry/Performance Variables (이젝터 형상/성능 변수에 따른 이젝터 성능 특성에 관한 연구)

  • Choi, Ji-Seon;Yu, I-Sang;Shin, Dong-Hae;Lee, Hee-Jun;Ko, Young-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.6
    • /
    • pp.496-502
    • /
    • 2018
  • In this study, experimental and analytical studies were carried out to observe the phenomenon of aerodynamic throat formed according to the primary flow and secondary flow momentum of the ejector. The equilibrium interval of the aerodynamic throat, which is the main variable of the ejector performance, was observed through the experiment using the cold flow experiment and the analysis using FLUENT. Performance characteristics were investigated by the change of the primary flow rate and the throat diameter of the ejector cylinder. As a result, the performance of the standard ejector was confirmed to be within the range of 0.33~1.167(off-design/design) and cylinder throat diameter range of 1~1.17(off-design/design area ratio).

Performance Characteristics of Refrigeration Cycles with Ejector using Refrigerants (이젝터를 적용한 냉동사이클의 냉매종류별 성능특성)

  • Yoon, Jung-In;Kim, Chung-Lae;Son, Chang-Hyo
    • Journal of Power System Engineering
    • /
    • v.21 no.1
    • /
    • pp.24-29
    • /
    • 2017
  • Studies in liquid-vapor ejector, which performs a great efficiency in refrigeration cycle is highly concerned. This paper is based on basic refrigeration cycle and three ejector refrigeration cycles and the comparison and contrasts about when 6 different refrigerants are applied to such refrigeration cycles. All cycles had a percentage increase of COP from 4 to 74% when ejector was applied, and the source of increasement was the decrease of total work done due to ejector's pressure recovery function. When R-245fa is applied to cycle (d), results showed that COP was the most superior in such cycle, R-245fa showed high volume entrainment ratio in all cycles. Future studies in refrigeration cycles will require more knowledge and experiments on ejector's appliance to refrigeration cycles and the actuation of such functions.