• Title/Summary/Keyword: Ejection Angle

Search Result 34, Processing Time 0.02 seconds

Development of an FPGA-based Sealer Coating Inspection Vision System for Automotive Glass Assembly Automation Equipment (자동차 글라스 조립 자동화설비를 위한 FPGA기반 실러 도포검사 비전시스템 개발)

  • Ju-Young Kim;Jae-Ryul Park
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.320-327
    • /
    • 2023
  • In this study, an FPGA-based sealer inspection system was developed to inspect the sealer applied to install vehicle glass on a car body. The sealer is a liquid or paste-like material that promotes adhesion such as sealing and waterproofing for mounting and assembling vehicle parts to a car body. The system installed in the existing vehicle design parts line does not detect the sealer in the glass rotation section and takes a long time to process. This study developed a line laser camera sensor and an FPGA vision signal processing module to solve this problem. The line laser camera sensor was developed such that the resolution and speed of the camera for data acquisition could be modified according to the irradiation angle of the laser. Furthermore, it was developed considering the mountability of the entire system to prevent interference with the sealer ejection machine. In addition, a vision signal processing module was developed using the Zynq-7020 FPGA chip to improve the processing speed of the algorithm that converted the profile to the sealer shape image acquired from a 2D camera and calculated the width and height of the sealer using the converted profile. The performance of the developed sealer application inspection system was verified by establishing an experimental environment identical to that of an actual automobile production line. The experimental results confirmed the performance of the sealer application inspection at a level that satisfied the requirements of automotive field standards.

Secondary Flow Patterns of Liquid Ejector with Computational Analysis (액체상 이젝터의 2차측 액체 송출량 특성 전산해석)

  • Kwon, Kwisung;Yun, Jinwon;Sohn, Inseok;Seo, Yongkyo;Yu, Sangseok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.2
    • /
    • pp.183-190
    • /
    • 2015
  • An ejector is a type of non-powered pump that is used to supply a secondary flow via the ejection of a primary flow. It is utilized in many industrial fields, and is used for fueling the vehicle because of less failures and simple structure. Since most of ejectors in industry are gas-to-gas and liquid to gas ejector, many research activities have been reported in optimization of gas ejector. On the other hand, the liquid ejector is also applied in many industry but few research has been reported. The liquid ejector occurs cavitation, and it causes damage of parts. Cavitation has bees observed at the nozzle throat at the specified pressure. In this study, a two-dimensional axisymmetric simulation of a liquid-liquid ejector was carried out using five different parameters. The angle of the nozzle plays an important role in the cavitation of a liquid ejector, and the performance characteristics of the flow ratio showed that an angle of $35^{\circ}$ was the most advantageous. The simulation results showed that the performance of the liquid ejector and the cavitation effect have to be considered simultaneously.

Shape Oscillation and Detachment of Droplet on Vibrating Flat Surface (진동하는 평판 위의 액적의 형상 진동 및 제거 조건에 대한 연구)

  • Shin, Young-Sub;Lim, Hee-Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.337-346
    • /
    • 2014
  • This study aimed to understand the mode characteristics of a droplet subject to periodic forced vibration and the detachment of a droplet placed on a plate surface. An surface was coated with Teflon to clearly observe the behavior of a droplet. The contact angle between the droplet and surface and the hysteresis were found to be approximately $115^{\circ}C$ and within $25^{\circ}C$, respectively. The coating process was performed in a clean room that had an environment with a low level of contaminants and impurities such as air dust, detergents, and particles. To predict the resonance frequency of a droplet, theoretical and experimental approaches were applied. Two high-speed cameras were configured to acquire side and top views and thus capture different characteristics of a droplet: the mode shape, the detachment, the separated secondary droplet, and the waggling motion. A comparison of the theoretical and experimental results shows no more than 18 discrepancies when predicting the resonance frequency. These differences seem to be caused by contact line friction, nonlinear wall adhesion, and the uncertainty of the experiment. For lower energy inputs, the contact line of the droplet was pinned and the oscillation pattern was axisymmetric. However, the contact line of the droplet was de-pinned as the oscillation became more vigorous with increased energy input. The size of each lobe at the resonance frequency is somewhat larger than that at the neighboring frequency. A droplet in mode 2, one of the primary mode frequencies, exhibits vertical periodic movement as well as detachment and secondary ejection from the main droplet.

Numerical Analysis of Heat Transfer Characteristics of Ribbed Channels with Different Film Cooling Hole Position (필름 냉각을 위한 리브드 채널의 홀 위치에 따른 열전달 특성 수치 해석)

  • Park, Jee Min;Moon, Joo Hyun;Lee, Hyung Ju;Lee, Seong Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.69-76
    • /
    • 2018
  • The present study analyzed the effect of film hole position of 45 degree ribbed cooling channel on film cooling performance of gas turbine blades. We also investigated the influence of the ribs under the fixed blowing ratio. Three-dimensional numerical model was constructed and extensive simulation was conducted using the commercial code (Fluent ver. 17.0) under steady-state condition. Base on the simulation results, We investigated the cooling effectiveness, flow velocity, streamline, and pressure coefficient. Moreover, We analyzed the effect of cooling hole position on ejection of the secondary flow caused by the rib structure. From the results, It was found that internal flow of the cooling channel forms a vortex pair in the counterclockwise from the top side, and clockwise from the bottom side. For the channels with ribs, the vortex flow generated by the ribs caused a higher pressure difference near the hole outlet, resulting in at least 12% higher cooling effectiveness than the channel without ribs. Additionally, when the hole is located on the left side of the ribbed channel (Rib-Left), it can be found that the secondary flow generated by the ribs hits against wall surface near the hole to form a flow in the direction of the hole inclination angle. Therefore, It is considered that the region where the cooling gas discharged to the blade surface stays in the main flow boundary layer is wider than the other cases. In this case, The largest pressure coefficient difference was observed near the outlet of the hole, and as a result, the discharge of the cooling gas was accelerated and the cooling efficiency was slightly increased.