• Title/Summary/Keyword: Ejection

Search Result 736, Processing Time 0.022 seconds

Effect on Stratification due to Diffuser Shape in a Thermal Storage Tank (온도 성층축열조 가시화 및 실증분석에 관한 고찰)

  • Lee Young-Soo;Lee Sang-Nam;Kim Jong-Ryul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.11
    • /
    • pp.990-997
    • /
    • 2005
  • The stratified effect was investigated with three different types of diffuser shape in a thermal storage tank with variation of diffuser diameter, velocity, Froude number etc. Its effect was estimated by the degree of stratification. No matter of diffuser diameter and shape, the degree of stratification was the best as the Froude number gets closer to 1. In the case of a curved diffuser, when its diameter is a quarter of tank diameter and ejection velocity in a diffuser is approximately 0.2 m/s, the Froude number was almost 1. In the case of a flatted diffuser, when ejection velocity was 0.05 m/s, the Froude number was 1.5. Both cases which Froude number were nearer 1, showed the good degree of stratification.

Effects of the Lateral Ejection Angles and Distances of Double-Jet Holes on Flim Cooling Effectiveness (이중분사 막냉각 홀의 측면 분사각 및 홀 사이의 거리가 막냉각 효율에 미치는 영향)

  • Choi, Dae-Woong;Lee, Ki-Don;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.4
    • /
    • pp.33-41
    • /
    • 2012
  • In the present work, a parametric study on double-jet film-cooling has been carried out to enhance the film-cooling effectiveness using three-dimensional Reynolds-averaged Navier-Stokes analysis. The shear stress transport turbulence model is used as the turbulence closure. The lateral ejection angles and the lateral and streamwise distance between the centers of the cooling holes are chosen as the geometric parameters. The spatially averaged film-cooling effectiveness averaged over an area of 8 hole diameters in width and 30 hole diameters in streamwise length is used to evaluate the performance of film-cooling. The parameter of the lateral distance has the largest impact on the film cooling effectiveness compared to the others. On the other hand, the parameter of streamwise distance gives the least influence on the film cooling effectiveness.

Mass and energy of erupting plasma associated with a coronal mass ejection in X-rays and EUV

  • Lee, Jin-Yi;Raymond, John C.;Reeves, Katharine K.;Moon, Yong-Jae;Kim, Kap-Sung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.85.1-85.1
    • /
    • 2015
  • We investigate the mass and energy of erupting plasma observed in X-rays and EUV, which is associated with a coronal mass ejection (CME) and an X-class flare. The erupting plasma was observed by both the X-ray telescope (XRT) on Hinode and the Atmospheric Imaging Assembly (AIA) on Solar Dynamic Observatory (SDO). We estimate the emission measures of the erupting plasma using a differential emission measure method. The plasma erupts with a loop-like structure in X-ray and EUV. We estimate the mass of erupting plasma assuming a cylinder structure. In addition, we estimate the radiative loss, thermal conduction, thermal, and kinetic energies of the eruptive hot plasma. We find that the thermal conduction timescale is much shorter than the duration of the eruption. This result implies that additional heating during the eruption may be required to explain the hot plasma observations in X-rays.

  • PDF

A Heuristic Approach for an Layout and Sizing of an Ejector Pin (사출 금형의 밀핀 설계를 위한 경험적 설계 접근법)

  • 이희성;변철웅;이수홍
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.2
    • /
    • pp.112-121
    • /
    • 2004
  • As customers demands are rapidly changing, a product life cycle is getting shorter and a product model is forced to be changed frequently. An ejecting design system becomes more important for high productivity to eject a product in high temperature without any damage. For example, an ejector pin that is a key component of the system can cause high local stresses and strains in the molding at the time of ejection. The number, the size, and the location of pins are important to make a smooth ejection. Therefore we propose an analytical approach with the aid of designer’s experience to calculate a total release force and pressure distribution so that the number, the size, and the location of pins can be easily determined. As a part of the result, the design system is built by Intent! with AutoCAD 2000 and a video player deck example is presented to verify the approach.

Study on Precision Cold Forging of helical Gear (헬리컬 기어의 정밀 냉간 단조에 대한 연구)

  • 박용복;양동열
    • Transactions of Materials Processing
    • /
    • v.8 no.4
    • /
    • pp.384-392
    • /
    • 1999
  • In metal forming, there are problems with recurrent geometric characteristics without explicitly prescibed boundary conditions. In such problems, so-called recurrent boundary conditions must be introduced. In this paper, as a practical application of the proposed method, the precision cold forging of a helical gear has been simulated by a three-dimensional rigid-plastic finite element method and compared with the experiment. The application of recurrent boundary conditions to helical gear forging analysis is proved to be effective and valid. the elastic stress analysis of the die for helical gear forging has been calculated by using the nodal force at the final stage obtained from the rigid-plastic finite element analysis. In order to obtain more precise gear products, the elastic analysis of the die after release of punch and the elastic spring-back analysis of product after ejection have been performed, and the final dimension of the computational product has been in good agreement with that of the experimental product.

  • PDF

Laser Microfabrication of Micro Actuator (레이저 미세 가공기술을 이용한 마이크로 엑츄에이터의 개발)

  • 김광열;고상철;박현기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.932-937
    • /
    • 2002
  • The polyimide nozzle and silicon restrictor inside a thermal micro actuator have been fabricated using state of the art laser micromachining methods. Numerical models of fluid dynamics inside the actuator chamber and nozzle are presented. The models include fluid flow from reservoir, bubble formation and growth, ejection through the nozzle, and dynamics of refill through restrictor. Since high tapered nozzle and restrictor are very important parameters for overall actuator performance design, a special setup for the beam delivery system has been developed. The effects of variations of nozzle thickness, diameter, taper angles, and restrictor shapes are simulated and some results are compared with the experimental results. It is fecund that the fluid ejection through the thinner and high tapered nozzle is more steady, fast, and robust and the tapered restrictor shows more satisfying refill than the zero taper one.

  • PDF

The Effect of Shielding Gas Composition on High Power Laser Welding Characteristics (보호가스 종류에 따른 고출력 레이저 용접특성)

  • Ahn, Young-Nam;Kim, Cheolhee
    • Journal of Welding and Joining
    • /
    • v.33 no.4
    • /
    • pp.17-23
    • /
    • 2015
  • Laser-gas metal arc hybrid welding has been considered as an alternative process of gas metal arc welding for offshore pipe laying. Fiber delivered high power lasers which enable deep penetration welding were recently developed but high power welding characteristics were not fully understood yet. In this study, the influence of shielding gas composition on welding phenomena in high power laser welding was investigated. Bead shapes, melt ejection and dropping were observed after autogenous laser welding with 100% Ar, Ar-20% $CO_2$, Ar-50% $CO_2$, and 100% $CO_2$ shielding gas. Process parameter window was widest with Ar-50% $CO_2$ shielding gas and the penetration was deepest with 100% $CO_2$ shielding gas. The melt dropping was not observed when Ar-50% $CO_2$ or 100% $CO_2$ shielding gas was supplied.