• Title/Summary/Keyword: Eigenvalue-Based Spectrum Sensing

Search Result 6, Processing Time 0.023 seconds

A Cooperative Spectrum Sensing Method based on Eigenvalue and Superposition for Cognitive Radio Networks (인지무선네트워크를 위한 고유값 및 중첩기반의 협력 스펙트럼 센싱 기법)

  • Miah, Md. Sipon;Koo, Insoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.39-46
    • /
    • 2013
  • Cooperative spectrum sensing can improve sensing reliability, compared with single node spectrum sensing. In addition, Eigenvalue-based spectrum sensing has also drawn a great attention due to its performance improvement over the energy detection method in which the more smoothing factor, the better performance is achieved. However, the more smoothing factor in Eignevalue-based spectrum sensing requires the more sensing time. Furthermore, more reporting time in cooperative sensing will be required as the number of nodes increases. Subsequently, we in this paper propose an Eigenvalue and superposition-based spectrum sensing where the reporting time is utilized so as to increase the number of smoothing factors for autocorrelation calculation. Simulation result demonstrates that the proposed scheme has better detection probability in both local as well as global detection while requiring less sensing time as compared with conventional Eigenvalue-based detection scheme.

Performance of Spiked Population Models for Spectrum Sensing

  • Le, Tan-Thanh;Kong, Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.3
    • /
    • pp.203-209
    • /
    • 2012
  • In order to improve sensing performance when the noise variance is not known, this paper considers a so-called blind spectrum sensing technique that is based on eigenvalue models. In this paper, we employed the spiked population models in order to identify the miss detection probability. At first, we try to estimate the unknown noise variance based on the blind measurements at a secondary location. We then investigate the performance of detection, in terms of both theoretical and empirical aspects, after applying this estimated noise variance result. In addition, we study the effects of the number of SUs and the number of samples on the spectrum sensing performance.

A CORDIC-Jacobi Based Spectrum Sensing Algorithm For Cognitive Radio

  • Tan, Xiaobo;Zhang, Hang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.1998-2016
    • /
    • 2012
  • Reliable spectrum sensing algorithm is a fundamental component in cognitive radio. In this paper, a non-cooperative spectrum sensing algorithm which needs only one cognitive radio node named CORDIC (Coordinate Rotation Digital Computer) Jacobi based method is proposed. The algorithm computes the eigenvalues of the sampled covariance of received signal mainly by shift and additional operations, which is suitable for hardware implementation. Based the latest random matrix theory (RMT) about the distribution of the limiting maximum and minimum eigenvalue ratio, the relationship between the probability of false alarm and the decision threshold is derived. Simulations and discussions show the method is effective. Real captured digital television (DTV) signals and Universal Software Radio Peripheral (USRP) are also employed to evaluate the performance of the algorithm, which prove the proposed algorithm can be applied in practical spectrum sensing applications.

A Real Time Sensing Through The Eigenvalue Detection in Cognitive Radio (Cognitive Radio 환경에서 고유치 값 검출을 통한실시간 센싱 방법)

  • Sohn, Sung-Hwan;Jang, Sung-Jeen;Kim, Jae-Moung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.3
    • /
    • pp.1-7
    • /
    • 2010
  • Cognitive Radio, which adaptively utilizes the vacant licensed spectrum band, is considered as an effective way to alleviate the scarcity of spectrum resource shortage. In order to guarantee the non-interference transmission of primary system, spectrum sensing, especially in quiet period, is proposed. However, it is insufficient to avoid the unacceptable interference caused by Cognitive Radios, because the primary user may appear anytime that is unpredictable. In this paper, we address the deficiency of conventional spectrum sensing and propose a novel Cognitive Radio receiver structure with monitoring function block to detect the appearance of primary user in a real-time manner. Simulations prove that the proposed eigenvalue based detection method together with the two-threshold decision procedure performs properly.

A Comparison of Spectrum-Sensing Algorithms Based on Eigenvalues

  • Ali, Syed Sajjad;Liu, Jialong;Liu, Chang;Jin, Minglu
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.4
    • /
    • pp.241-247
    • /
    • 2015
  • Cognitive radio has been attracting increased attention as an effective approach to improving spectrum efficiency. One component of cognitive radio, spectrum sensing, has an important relationship with the performance of cognitive radio. In this paper, after a summary and analysis of the existing spectrum-sensing algorithms, we report that the existing eigenvalue-based semi-blind detection algorithm and blind detection algorithm have not made full use of the eigenvalues of the received signals. Applying multi-antenna systems to cognitive users, we design a variety of spectrum-sensing algorithms based on the joint distribution of the eigenvalues of the received signal. Simulation results validate that the proposed algorithms in this paper are able to detect whether the signal of the primary user exists or not with high probability of detection in an environment with a low signal-to-noise ratio. Compared with traditional algorithms, the new algorithms have the advantages of high detection performance and strong robustness

A Novel Detection Method of the Satellite Phone Signal based on Array Antennas (Array 안테나를 이용한 위성전화신호의 검출 방법)

  • Kim, Yun-Bong;Song, Jeong-Ig;Ning, Han;Kim, Jae-Moung
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.2
    • /
    • pp.53-58
    • /
    • 2007
  • The Satellite Mobile Communication System holds several advantages, such as wide coverage that guarantees the communication in a huge area. It is suitable in the ocean and forest and especially in emergency situation. However, the licensed frequency is not always occupied within all coverage and all the time. The actual utilization rate is relatively low compared to other wireless communications such as cellular systems. There are a large amount of white spaces in its coverage. Therefore, it is necessary to consider introducing additional services such as data communication, in order to increase the spectrum utilization as well as the revenue of the Satellite service provider. In this paper, we first analyze the possibility to implement new services in the licensed band of satellite mobile phone by its provider. Then we address the most significant issue for the implementation of current service, which is how to accurately detect the satellite mobile terminals. Finally, we suggest two new possible solutions namely, eigenvalue detection based methods to find out the existence of transmitted signal from the satellite mobile terminals.

  • PDF