• Title/Summary/Keyword: Eigenfrequency

Search Result 42, Processing Time 0.015 seconds

Estimation of active multiple tuned mass dampers for asymmetric structures

  • Li, Chunxiang;Xiong, Xueyu
    • Structural Engineering and Mechanics
    • /
    • v.29 no.5
    • /
    • pp.505-530
    • /
    • 2008
  • This paper proposes the application of active multiple tuned mass dampers (AMTMD) for translational and torsional response control of a simplified two-degree-of-freedom (2DOF) structure, able to represent the dynamic characteristics of general asymmetric structures, under the ground acceleration. This 2DOF structure is a generalized 2DOF system of an asymmetric structure with predominant translational and torsional responses under earthquake excitations using the mode reduced-order method. Depending on the ratio of the torsional to the translational eigenfrequency, i.e. the torsional to translational frequency ratio (TTFR), of asymmetric structures, the following three cases can be distinguished: (1) torsionally flexible structures (TTFR < 1.0), (2) torsionally intermediate stiff structures (TTFR = 1.0), and (3) torsionally stiff structures (TTFR > 1.0). The even distribution of the AMTMD within the whole width and half width of the asymmetric structure, thus leading to three cases of installing the AMTMD (referred to as the AMTMD of case 1, AMTMD of case 2, AMTMD of case 3, respectively), is taken into account. In the present study, the criterion for searching the optimum parameters of the AMTMD is defined as the minimization of the minimum values of the maximum translational and torsional displacement dynamic magnification factors (DMF) of an asymmetric structure with the AMTMD. The criterion used for assessing the effectiveness of the AMTMD is selected as the ratio of the minimization of the minimum values of the maximum translational and torsional displacement DMF of the asymmetric structure with the AMTMD to the maximum translational and torsional displacement DMF of the asymmetric structure without the AMTMD. By resorting to these two criteria, a careful examination of the effects of the normalized eccentricity ratio (NER) on the effectiveness and robustness of the AMTMD are carried out in the mitigation of both the translational and torsional responses of the asymmetric structure. Likewise, the effectiveness of a single ATMD with the optimum positions is presented and compared with that of the AMTMD.

An analysis of horizontal deformation of a pile in soil using a beam-on-spring model for the prediction of the eigenfrequency of the offshore wind turbine (해상풍력터빈의 고유진동수 예측을 위한 지반에 인입된 파일의 탄성지지보 모델 기반 수평 거동 해석)

  • Ryue, Jungsoo;Baik, Kyungmin;Kim, Tae-Ryong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.4
    • /
    • pp.261-271
    • /
    • 2016
  • In the prediction of response of a pile in soil, numerical approaches such as a finite element method are generally applied due to complicate nonlinear behaviors of soils. However, the numerical methods based on the finite elements require heavy efforts in pile and soil modelling and also take long computing time. So their usage is limited especially in the early design stage in which principal dimensions and properties are not specified and tend to vary. On the contrary, theoretical approaches adopting linear approximations for soils are relatively simple and easy to model and take short computing time. Therefore, if they are validated to be reliable, they would be applicable in predicting responses of a pile in soil, particularly in early design stage. In case of wind turbines regarded in this study, it is required to assess their natural frequencies in early stages, and in this simulation the supporting pile inserted in soil could be replaced with a simplified elastic boundary condition at the bottom end of the wind turbine tower. To do this, analysis for a pile in soil is performed in this study to extract the spring constants at the top end of the pile. The pile in soil can be modelled as a beam on elastic spring by assuming that the soils deform within an elastic range. In this study, it is attempted to predict pile deformations and influence factors for lateral loads by means of the beam-on-spring model. As two example supporting structures for wind turbines, mono pile and suction pile models with different diameters are examined by evaluating their influence factors and validated by comparing them with those reported in literature. In addition, the deflection profiles along the depth and spring constants at the top end of the piles are compared to assess their supporting features.