• Title/Summary/Keyword: Eigen value

Search Result 189, Processing Time 0.029 seconds

An Application of a Parallel Algorithm on an Image Recognition

  • Baik, Ran
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.219-224
    • /
    • 2017
  • This paper is to introduce an application of face recognition algorithm in parallel. We have experiments of 25 images with different motions and simulated the image recognitions; grouping of the image vectors, image normalization, calculating average image vectors, etc. We also discuss an analysis of the related eigen-image vectors and a parallel algorithm. To develop the parallel algorithm, we propose a new type of initial matrices for eigenvalue problem. If A is a symmetric matrix, initial matrices for eigen value problem are investigated: the "optimal" one, which minimize ${\parallel}C-A{\parallel}_F$ and the "super optimal", which minimize ${\parallel}I-C^{-1}A{\parallel}_F$. In this paper, we present a general new approach to the design of an initial matrices to solving eigenvalue problem based on the new optimal investigating C with preserving the characteristic of the given matrix A. Fast all resulting can be inverted via fast transform algorithms with O(N log N) operations.

Image segmentation by fusing multiple images obtained under different illumination conditions (조명조건이 다른 다수영상의 융합을 통한 영상의 분할기법)

  • Chun, Yoon-San;Hahn, Hern-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.2
    • /
    • pp.105-111
    • /
    • 1995
  • This paper proposes a segmentation algorithm using gray-level discontinuity and surface reflectance ratio of input images obtained under different illumination conditions. Each image is divided by a certain number of subregions based on the thresholds. The thresholds are determined using the histogram of fusion image which is obtained by ANDing the multiple input images. The subregions of images are projected on the eigenspace where their bases are the major eigenvectors of image matrix. Points in the eigenspace are classified into two clusters. Images associated with the bigger cluster are fused by revised ANDing to form a combined edge image. Missing edges are detected using surface reflectance ration and chain code. The proposed algorithm obtains more accurate edge information and allows to more efficiently recognize the environment under various illumination conditions.

  • PDF

Time Delay Control of Noncolocated Flexible System in z-Domain (비병치 유연계의 시간지연 이산제어)

  • 강민식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1089-1098
    • /
    • 1992
  • This paper concerns a discrete time control of noncolocated flexible mechanical systems by using time delay relation. A stability criterion of closed-loop system is derived in discrete time domain and a graphic method is developed for designing controllers. Based on this method, a derivative controller is designed for a simply supported uniform beam in the cases of colocation without time delay and of noncolocation with time delay. Some simulation results show the effectiveness of the suggested control.

Impact and post-impact of ring supports: Eigenfrequency response at nano-scale

  • Madiha Ghamkhar;MohamedA. Khadimallah;Muzamal Hussain;Abdelouahed Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.88 no.2
    • /
    • pp.109-115
    • /
    • 2023
  • In this paper, frequencies of zigzag structure of carbon nanotubes isinvestigated based on Donnell shell theory. These tubes are wrapped with the ring supports in the axial direction. The fundamental frequency curves displayed in article show the dependence of vibrations attributes to zigzag single walled carbon nanotubes. Various zigzag indices are introduced against the variation of length to predict the vibration. Also, the influence of ring supports is sketched with proposed structure for frequency analysis. The frequencies of zigzag tube decreases as the length increases. It is observed that the frequencies decreases with ring support and have higher frequencies without ring. The problem is formulated using Partial Differential Equation. Three expressions of modal deformation displacement functions is used for the elimination of temporal variation to form the solution in the eigen from. For the stability of present study the results are compared with experimentally and numerically in the open text.

A Study on Optimization Approach for the Quantification Analysis Problem Using Neural Networks (신경회로망을 이용한 수량화 문제의 최적화 응용기법 연구)

  • Lee, Dong-Myung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.206-211
    • /
    • 2006
  • The quantification analysis problem is that how the m entities that have n characteristics can be linked to p-dimension space to reflect the similarity of each entity In this paper, the optimization approach for the quantification analysis problem using neural networks is suggested, and the performance is analyzed The computation of average variation volume by mean field theory that is analytical approximated mobility of a molecule system and the annealed mean field neural network approach are applied in this paper for solving the quantification analysis problem. As a result, the suggested approach by a mean field annealing neural network can obtain more optimal solution than the eigen value analysis approach in processing costs.

The effect of embedding a porous core on the free vibration behavior of laminated composite plates

  • Safaei, Babak
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.659-670
    • /
    • 2020
  • This paper proposes the use of a porous core between layers of laminated composite plates to examine its effect on the natural frequencies of the resulted porous laminated composite sandwich plate (PLCSP) resting on a two-parameter elastic foundation. Moreover, it has been suggested that the dispersion of porosity has two different functionally graded (FG) patterns which are compared with a uniformly dispersed (UD) profile to find their best vibrational efficiency in the proposed PLCSPs. In FG patterns, two types of dispersions, including symmetric (FG-S) and asymmetric (FG-A) patterns have been considered. To derive the governing Eigen value equation of such structures, the first order shear deformation theory (FSDT) of plates has been employed. Accordingly, a finite element method (FEM) is developed to solve the derived Eigen value equation. Using the mentioned theory and method, the effects of porosity parameters, fiber orientation of laminated composite, geometrical dimensions, boundary conditions and elastic foundation on the natural frequencies of the proposed PLCSPs have been studied. It is observed that embedding porosity in core layer leads to a significant improvement in the natural frequencies of PLCSPs. Moreover, the natural frequencies of PLCSPs with FG porous core are higher than those with UD porous core.

Capacity Characteristics of the Indoor Propagation Channel for MIMO System at 5 GHz (5GHz 대역 MIMO 시스템에 대한 실내 전파 채널용량 특성)

  • Ryu, Seong-Hyun;Kim, Jung-Ha;Kwon, Se-Woong;Yoon, Young-Joong
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.43-46
    • /
    • 2003
  • This paper presents capacity characteristics of the indoor LOS(Line-Of-Sight) propagation channel for MIMO system at 5GHz. The distance between antenna elements, their moving path, and number of transmitting and receiving antennas can be determined by wanted eigen-vlaue, and channel capacity of the MIMO communication channel using only reliable simulation without measurements. The simulation uses 3D Ray tracing and patch scattering model to which electromagnetic material constants are applied. As distance between antenna elements increases, distribution of the eigen-value show a tendency to decrease, but channel capacity increases in LOS environment. However, despite of short distance between antenna elements, large value of channel capacity is obtained in positions which have high AS. When the position of receiver antennas are shifted, channel capacity hardly changed, and as number of antenna elements increases, channel capacity also increases regularly.

  • PDF

The Development of Topographic Feature Extraction Method by use of the Seafloor Curvature Measurement (곡률 계산에 의한 해저면 지형요소 추출 기법 개발)

  • Kim, Hyun-Sub;Jung, Mee-Sook;Park, Cheong-Kee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.3
    • /
    • pp.163-172
    • /
    • 2007
  • A seafloor curvature measurement method was developed to extract redundant topographic features from the multi-beam bathymetry data, and then applied to the data of abyssal plain area in the Pacific. Any seafloor might be modeled to a quadratic surface determined in a linear least squares sense, and its curvature could be derived from the eigen values related with quadratic model parameters. The curvature's magnitude as well as polarity showed distinct relationship with geometric characteristics of the seafloor like as ridge and valley. From the investigation of curvature's variation with the number of data in the quadratic surface, the optimal size of data aperture could be applied to real bathymetry data. The application to real data also required the determination of the accompanying threshold values to cope with corresponding topographic features. The calculation method of previous studies were reported to be sensitive to the background noise. The improved curvature measurement method, incorporating the sum of eigen values has reduced unwanted artifacts and enhanced ability to extract lineament features along strike direction. The result of application shows that the curvature measurement method is effective tool for the estimation of a possible mining area in the seamount free abyssal hill area.

Buckling Behaviors of Single-Layered Lattice Dome under Radial Uniform Loads (등분포 중심축 하중을 받는 단층래티스돔의 좌굴거동)

  • Kim, Choong-Man;Yu, Eun-Jong;Rha, Chang-Soon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • This paper presented the nonlinear behaviors of the single-layered lattice dome, which is widely used for the long-span structure system. The behaviors were analysed through the classical shell buckling theory as the single-layered lattice dome behaves like continum thin shell due to its geometric characteristics, and finite element analysis method using the software program Nastran. Shell buckling theory provides two types of buckling loads, the global- and member buckling, and finite element analysis provides the ultimate load of geometric nonlinear analysis as well as the buckling load of Eigen value solution. Two types of models for the lattice dome were analysed, that is rigid- and pin-jointed structure. Buckling load using the shell buckling theory for each type of lattice dome, governed by the minimum value of global buckling or member buckling load, resulted better estimation than the buckling load with Eigen value analysis. And it is useful to predict the buckling pattern, that is global buckling or member buckling.

A Q-Methodological Study on the Radiologist's Image of Radiology College Students Experienced Clinical Practice (임상실습을 경험한 방사선과 학생의 방사선사 이미지에 대한 주관성 연구)

  • Kim, Young-Ran
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.7
    • /
    • pp.51-57
    • /
    • 2020
  • This study was conducted to examine the type of subjective perceptions and characteristics of the type toward the image of students enrolled in the Department of Radiology who experienced clinical training by applying Q Methodology which is aiming at the research of human subjectivity, and provide basic data for educational programs for the Department of Radiology to establish the image of a radiological technologist based on the result. This study conducted convenience sampling with 30 students of the Department of Radiology who experienced their first clinical training for 8 weeks as a P sample, forcing 33 Q samples to be distributed on the nine-point scale Q distribution chart. After that, this study processed collected data with principal factor analysis by QUANL program. Study results show that Eigen value was more than 1.0, which was divided into 2 types. Type 1 was "Patient-oriented" and type 2 was "Organization-oriented". These results can be helpful as a basic resources to understand Radiology Students who will choose a job by using different sense of value of their job.