• Title/Summary/Keyword: Eichhornia crassipes

Search Result 31, Processing Time 0.023 seconds

Sewage Treatment Using Water Hyacinth (Eichhornia crassipes) and Watercress (Oenanthe Javanica) (부레옥잠과 미나리를 이용한 연속식 하수처리에서 COD, N 및 P의 제거)

  • Park, Jin-Sick
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.2
    • /
    • pp.144-148
    • /
    • 2002
  • This study was carried out to investigate sewage treatment efficiencies using water hyacinth (Eichhornia crassipes) and watercress (Oenanthe Javanica). In the hyacinth system about 30% of COD introduced was removed during 2 days of hydraulic retention time, and about 30$\sim$50% of COD was removed in the watercress system during 1.2$\sim$2 days of hydraulic retention time. Therefore, COD loading of $76\sim170$ kg $COD/ha{\cdot}day$ was removed during 2$\sim$3 days of hydraulic retention time at the 0.18 $m^2$ area in the water hyacinth-watercress continuous system. Also 40$\sim$50% of N and P in the sewage were removed in the tested water hyacinth-watercress system Although COD, N and P concentrations in the final effluent were still higher than the limits of waste discharge, applicability of this waste water treatment system should be further investigated as an alternative method far small scale sewage treatments.

A study on treatment farm.fishing village wastewater using aquatic plants (수생식물을 이용한 농어촌하수 처리에 관한 연구)

  • 박진식;문추연;장성호
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.2
    • /
    • pp.40-47
    • /
    • 2002
  • In this study, water hyacinth plants(Eichhornia crassipes), water parsley(Oenanthe javanica) and Lemna paucicostate were used to treat contaminants such as COD, T-N and T-P in far m·fishing village wastewater. The results were as follows : In the batch system experiment, water hyacinth was showed at the high removal efficiency in the 173∼412kgCOD/ha·day concentration that is rather than 260mg/1 of the high concentration. The next is Oenanthe javanica, Lemna. Oenanthe javanica was showed the high removal efficiency in the 96∼173kgCOD/ha·day concentration that is less than 260mg/1 of the low concentration.

Effects of Heavy Metals on the Beware Treatment Process by Water Hyacinth (중금속이 수생히야신스(부레옥잠)를 이용한 하수처리 공정에 미치는 영향)

  • 정재욱;유홍일;유재근
    • Journal of environmental and Sanitary engineering
    • /
    • v.9 no.2
    • /
    • pp.110-119
    • /
    • 1994
  • The objective of the this study was to evaluate the effects of heavy metals on the sewage treatment process designed to remove organic material and nutrients using Water- hyacinth ( Eichhornia crassipes ). Batch experiments were carried out using domestic sewage spiked with different level of heavy metal mixtures ( Cd, Pb and Cu ). The specific growth rates of Water- hyacinth ranged from 0.0008 to 0.0015 1/day( operated at water temperatures of 22 ∼30$\circ $c ) and increased as the concentration of heavy metals decreased. The test result showed that the permissible maximum concentrations Cd, Pb and Cu for the growth of Water- hyacinth were 0.5, 1, and 6 mg/ℓ respectively. Under these maximum permissible heavy metal loads, removal rate of organic material, nitrogen and phosphorus were 85%,75% and 75% , respectively, during 40days of the test period.

  • PDF

The Growth of Tilapia in a Closed Water Recirculating System without Filter Bed (무여과조 순환수 사육장치내에서의 Tilapia의 성장)

  • KIM In-Bae;KHANG Seokjoong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.1
    • /
    • pp.47-51
    • /
    • 1982
  • Red tilapia fingerlings were tested for 45 days on the growth rate in a closed recirculating water system omitting filter bed and was compared with common carp fingerlings grown together in the same tank and also with red tilapia fingerlings grown in a well conditioned conventional pond. The tank water was kept in deepgreen colour by heavy phytoplankton bloom during the most of the experimental period and duckweeds, Lemna sp. and water hyacinth, Eichhornia crassipes were put to grow in the parts of the water system. Total ammonia level in the tank was mostly kept at about 5 to 7 ppm, with a fluctuation between 3.4 and 11.2 ppm. Average daily growth rate of the tilapia in the experimental tank was $6.5112\%$ without any mortality, compared to $3.617\%$ for common carp fingerlings involving some mortality in the same tank, and to $5.7712\%$ for the tilapia grown in the conventional pond. The feed used for the experiment was one prepared for the rearing of common carp, and the duckweed grown in parts of the water system was routinely collected and fed to the tilapia in the tank as supplementary diet probably satisfying unknown growth factors.

  • PDF

Studies on the Purification of Sewage Water by Water Hyacinth (Eichhornia crassipes) (1부레옥잠에 의한 생활오수(生活汚水)의 정화효과(淨化效果))

  • Kim, Bok-Young;Lee, Sang-Kyu;Kwean, Chang-Seag;So, Kyu-Ho;Yun, Eun-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.10 no.1
    • /
    • pp.51-57
    • /
    • 1991
  • Field experiments were carried out to evaluate the utility of water hyacinth(Eichhornia crassipes Solm-Laub) for purifyng sewage water in paddy fields of $247m^2$(75 Pyung). A field was lined with PVC film at a depth of 30cm and sewage water for 40 days. The results obtained with the use of water hyacinth in the sewage water are summarized as follows : 1. The Sodium linear dodecyl benzene sulfonate content of sewage water on the inlet was 6.33 ppm, themiddle point was 3.50 ppm and the outlet was 1.37 ppm. 2. With the use of water hyacinth in the sewage and the distilled water, the L.A.S. content were decreased from 7.3 and 4.0 to 0, respectively. 3. Sterillization with 70% ethyl alcohol at the roots of the water hyacinth was reduced the degradation effect of L.A.S. 4. The COD and $NH_4^+-N$ content of the sewage decreased from 107 and 32.7 ppm to 32.6 and 16.2 ppm, respectively and the P, Na and Cl content also were reduced.

  • PDF

Survey on Nutrient Removal Potential and Growth State of Water Hyacinth (Eichhornia crassipes) at Seo-Ho. (서호수에서 부레옥잠 생육상태와 영양염류 제거량 조사)

  • Kim, Bok-Young;Lee, Jong-Sik;Kim, Jin-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.2
    • /
    • pp.145-149
    • /
    • 1998
  • To find out the effect of water hyacinth(Eichhornia crassipes Solms-Laub) on the control of eutrofication and plant damage with irrigation water contamination, its ability to remove the nutrients such as nitrogen and phosphrus was studied. The overall results are summarized as follow. 1. It was possible to cultivate water hyacinth for 4 month from June to the middle of October in Suwon. 2. The number of plant was increased from 1,320 to 50,600 for 4 months, and total amounts of N, P, K removed from Seo-Ho by water hyacinth were 78.3, 64.2 and 152.4 kg/10a, respectively. 3. EC and $NH_4-N$ contents were lower at water hyacinth treatment than non-treatment and monthly variation of those contents were decreased until August. 4. With the cultivation of water hyacinth in animal waste water in vinyl plastic house, pH, EC, COD and concentrations of $NH_4-N$ and $PO_4-P$ in the water were drastically decreased. 5. Nitrogen contents absorbed from waste water existed in the order of leaf > stem > root but those of phosphorus root > stem > leaf.

  • PDF

Inorganic Nutrient Removal Efficiency of Aquatic Plants from Recirculating Aquaculture System (수생식물을 이용한 담수 순환여과식 양식용수내의 무기영양염 처리 효율)

  • 마진석;오승용;조재윤
    • Journal of Aquaculture
    • /
    • v.16 no.3
    • /
    • pp.171-178
    • /
    • 2003
  • Inorganic nutrients such as nitrogen and phosphate compounds accumulate in recirculating aquaculture systems. These nutrients must be removed from the system before they affect pH and fish health. For this purpose, aquatic plants are a simple and inexpensive method of removal. There are four commonly used aquatic plants: Eichhornia crassipes (water hyacinth), Pistia stratiotes (water lettuce), Hygrophila angustifolia, and Hydrocotyle leucocephala in freshwater recirculating aquaculture systems in Korea, but their efficiencies are not known. Therefore, removal efficiencies of inorganic nutrients from a freshwater recirculating aquaculture water with four commonly used aquatic plants were tested. Removing efficiencies of TAN, N $O_2$$^{[-10]}$ -N, and N $O_3$$^{[-10]}$ -N of the plants in 210 L aquaria for 48-hour period were tested. The removing efficiencies of TAN, N $O_3$$^{[-10]}$ -N, and P $O_4$$^{3-}$-P of the two most effective plants, water hyacinth and water lettuce, were also tested in 690 L (surface area of 1.55 $m^2$) tanks under 2 different initial stocking densities, 4 kg and 6 kg, for 22 days. Proximate analysis major nutrients and N and P contents of the all plants were analyzed for calculating net removal weight of N and P by the plants. Water lettuce was the most effective for removing TAN, N $O_2$$^{[-10]}$ -N, and N $O_3$$^{[-10]}$ -N from the water for 48-hour period tested followed by water hyacinth and Hygrophila angustifolia. Water lettuce reduced TAN, N $O_2$$^{[-10]}$ -N, and N $O_3$$^{[-10]}$ -N concentration from 2.3 mg/L, 0.197 mg/L, and 21.4 mg/L to 0.4 mg/L, 0.024 mg/L and 17.4 mg/L, respectively while water hyacinth reduced them down to 0.6 mg/L, 0.029 mg/L and 17.9 mg/L, respectively. The concentrations of TAN, N $O_2$$^{[-10]}$ -N, and N $O_3$$^{[-10]}$ -N in Hydrocotyle leucocephala group were rather increased up to 3.7 mg/L, 5.7 mg/L and 48.2 mg/L, respectively. This is because the creeping stem of Hydrocotyle leucocephala had to be cut to meet stocking weight resulting in decaying of the stem in the aquaria during experiment. The net growth in weight of water hycinth and water lettuce of 4 kg each in the 1.55 $m^2$ tanks for 22 days were 9.768 kg and 10.803 kg respectively, and those at initial weight of 6 kg each were 8.393 kg and 9.433 kg, respectively. The reason of lower net growth in the later group was restricted growth space. Nitrogen and phosphorus contents in water hyacinth were 2.89% and 0.27%, and those in water lettuce were 3.87% and 0.36%, respectively. Average quantities of removed N and P from 1.55 $m^2$ tanks by water hyacinth for 22 days were 18.9 g and 1.75 g, while those by water lettuce were 36.8 g and 3.5 g, respectively. Therefore water lettuce showed much higher efficiencies for removing both N and P from recirculating aquaculture water than water hyacinth.

Effects of Floating and Submerged Plants on Important Water Environments of Wetland (부유식물과 침수식물이 습지의 주요 수 환경에 미치는 영향)

  • Lee, Geun-Joo;Sung, Kijune
    • Journal of Wetlands Research
    • /
    • v.15 no.3
    • /
    • pp.289-300
    • /
    • 2013
  • In this study, two types of wetland plants, Eichhornia crassipes (a floating plant) and Ceratophyllum demersum (a submerged plant) were introduced to wetland mesocosms to understand how the water properties of wetlands such as pH, dissolved oxygen content, water temperature, oxidation reduction potential, and nutrient concentrations are affected by different types of wetland plant. The floating plant lives on the water surface and can block light penetration; it exhibited the lowest water temperature and temperature difference between lower and upper layers. After the addition of contaminants, the dissolved oxygen (DO) concentration decreased abruptly but recovered continuously in all mesocosms; especially the submerged plants, which photosynthesize in water, showed the largest increases in DO and diel periodicity DO, as well as in pH value. The oxidation-reduction potential in both water and sediment were affected by the presence of wetland plants and plant type and the results suggest that various aspects of wetland biogeochemistry are affected by the presence and type of wetland plants. The total nitrogen and phosphorous concentrations in water decreased in the following order: Water only < Water + Soil < Floating Plants < Submerged Plants. Although both floating and submerged plants can control algal concentrations, the effect was more prominent for floating plants.

Effect of Rotary Drum on the Speciation of Heavy Metals during Water Hyacinth Composting

  • Singh, Jiwan;Kalamdhad, Ajay S.
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.177-189
    • /
    • 2013
  • Studies were carried out on the speciation of heavy metals (Zn, Cu, Mn, Fe, Ni, Pb, Cd, and Cr) during rotary drum composting of water hyacinth (Eichhornia crassipes) for a period of 20 days. Five different proportions of cattle manure, water hyacinth and sawdust were prepared for composting. This study concluded that, rotary drum was very efficient for the degradation of organic matter as well as for the reduction of mobility and bioavailability of heavy metals during water hyacinth composting. The results from the sequential extraction procedure of heavy metals shows that rotary drum composting changed the distribution of five fractions of Zn, Cu, Mn, Fe, Ni, Pb, Cd, and Cr. The highest reduction in the bioavailability factors of Pb and Cd was observed during the process. The total concentration of Cu, Cr, and Cd was very low compared to the other metals (Zn, Mn, Fe, Ni, and Pb); however, the percentage of exchangeable and carbonate fractions of these metals was similar to other metals. These results confirmed that the bioavailability of metals does not depend on the total concentration of metals. From this study, it can be concluded that the addition of an appropriate proportion of cattle manure significantly reduced the mobile and easily available fractions (exchangeable and carbonate fractions) during water hyacinth composting in rotary drum.

Evaluation of Some Aquatic Plants from Bangladesh through Mineral Composition, In Vitro Gas Production and In Situ Degradation Measurements

  • Khan, M.J.;Steingass, H.;Drochner, W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.4
    • /
    • pp.537-542
    • /
    • 2002
  • A study was conducted to evaluate the nutritive potential value of different aquatic plants: duckweed (Lemna trisulaca), duckweed (Lemna perpusila), azolla (Azolla pinnata) and water-hyacinth (Eichhornia crassipes) from Bangladesh. A wide variability in protein, mineral composition, gas production, microbial protein synthesis, rumen degradable nitrogen and in situ dry matter and crude protein degradability were recorded among species. Crude protein content ranged from 139 to 330 g/kg dry matter (DM). All species were relatively high in Ca, P, Na, content and very rich in K, Fe, Mg, Mn, Cu and Zn concentration. The rate of gas production was highest in azolla and lowest in water-hyacinth. A similar trend was observed with in situ DM degradability. Crude protein degradability was highest in duckweed. Microbial protein formation at 24 h incubation ranged from 38.6-47.2 mg and in vitro rumen degradable nitrogen between 31.5 and 48.4%. Based on the present findings it is concluded that aquatic species have potential as supplementary diet to livestock.