• Title/Summary/Keyword: Egress modeling

Search Result 12, Processing Time 0.049 seconds

Comparison of Egress Modeling and Experiments for Flow Rate in the Bottleneck (병목현상 시 유동률에 대한 피난실험 및 모델링 비교)

  • Hwang, Eun-Kyoung;Woo, Sujin;Kim, Jong-Hoon;Kim, Woon-Hyung
    • Fire Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.35-40
    • /
    • 2014
  • Bottleneck occurs as many people crowd into narrow doorway or corridor. Delaying egress time is occurred by bottleneck effect, and it is very important phenomenon on the egress analysis for building fire. An analysis of egress time should includes flow rate for considering bottleneck. Flow rate is numbers of people who pass the narrow gate as door or start point of corridor per unit length and unit time. The flow rate resulted from egress modeling should be approached to the result of experiments. In this study, flow rates from modeling by 'Pathfinder' and experiments was compared. The difference between the result from egress modeling and the one from experiments was verified. The average value of experiments is $4.25N/m{\cdot}s$, and the maximum average value of modeling is $1.55N/m{\cdot}s$.

Comparison of Egress Modeling and Experiments for Joint Flow Rate in the Staircase (피난계단 합류 시 유동률에 대한 피난실험 및 모델링 비교)

  • Hwang, Eun-Kyoung;Woo, Sujin;Kim, Jong-Hoon;Kim, Woon-Hyung
    • Fire Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.41-46
    • /
    • 2014
  • Junction at the staircase is one of key factors for building egress analysis. The most important factor is the congestion at the door or somewhere connecting from bigger area to smaller one. The other factor is the congestion in the staircase. It happens when people from upper floors meets people from the connecting floor. Especially egress situation at the high-rise building is worse. The simulation of the junction is only described by physical agent algorithms in egress model. For that reason, the description of phenomena will validate with the result of experiment and estimate the gap between modeling and experiment. In this research, the experiment of the junction and the simulation was conducted and validated. The gap between the experiment and the modeling was estimated. The flow rates of modeling were lower than the modeling.

Comparison of Egress Modeling for the Connected Space from Subway Car to Platform (지하철 차량과 승강장의 연계공간에 대한 피난모델링 적용비교)

  • Kim, Jong-Hoon;Seo, Dong-Hoon;Eo, Deuk-Gang;Kim, Woon-Hyung;Lee, Duck-Hee;Jung, Woo-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.870-873
    • /
    • 2011
  • The circumstance as platform and tunnel is very important in evacuation from passenger train car on fire. The comparison of egress modeling by SIMULEX, PATHFINDER, STEPS was conducted in order to analyze for the influence of platform to egress from subway car. Model subway car is seoul metro subway car. Model platform was designed by code 'Complementary design guide for connecting and convenience facilities, and urban subway station'.

  • PDF

The Improvement of Evacuation Performance for Discount-Store in Underground (할인점 지하매장의 피난성능 개선에 관한 연구)

  • 김영일;윤명오;김종훈;김운형
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.93-99
    • /
    • 2001
  • This study aims to improve the Evacuation Performance o( the I)inc()unto-store in underground that is rapidly new shopping store in Korea. In this paper, The architectural properties of the floor plan and section was reviewed with egress focus, occupant load density of the Discount-store was surveyed and the procedure and method of performance based egress design for this occupancy was analysed with SIMULEX model and calculation method. As a result of modeling, more longer available safe egress time (ASET) is expected than required safe egress time (RSET)in underground discount-store. In order to improve the Evacuation Performance for this type occupancy, egress capacity including escape stair, aisle width, escape door is calculated with based on occupant load density and review of shopping cart's structure and size and maximum escape capacity of the cash counter.

  • PDF

Analysis of Flow Rate for Egress Modeling of Passenger Car (철도차량 피난모델링을 위한 유동계수에 관한 분석)

  • Kim, Jong-Hoon;Kim, Woon-Hyung;Roh, Sam-Kew;Lee, Duck-Hee;Jung, Woo-Sung;Proulx, Guylene
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2120-2124
    • /
    • 2008
  • In order to rise up the accuracy of evaluation of egress safety for train car and facilities, analysis of egress route, scenario and the prediction by variation of flow rate were conducted. According to analysis of egress scenario for train, the extra time should be added to the time from train to safety area when the distance between the train car floor level and the track level exists. In the result of hand calculation, the egress time was 123.1 s at flow rate 0.5, was 61.5 s at flow rate 1.0, and was 41 s at flow rate 0.5.

  • PDF

Case Study about Performance Based Design through Fire & Egress Simulation for Atrium of A Hotel & Casino (A 호텔 & 카지노 아트리움의 화재 및 피난시뮬레이션을 통한 성능위주설계 사례연구)

  • Park, Chang-Bok;Lee, Yong-Ju;Kim, Min-Ju;Yoon, Myong-O;Choi, Young-Hwa;Park, Jae-Sung;Kim, Hwan-Jin
    • Fire Science and Engineering
    • /
    • v.23 no.2
    • /
    • pp.13-19
    • /
    • 2009
  • This study is related with fire risk assessment for occupant of the area adjacent to not enclosed atrium through the computer modeling and application of enhanced fire protection systems depending on the result. Fire scenario is intended to evaluate the impact of a fire from atrium base within the corridor adjacent to the atrium and to compare with egress time depending on the warning system. The major purpose of this study is to figure out fire life safety for occupant adjacent to atrium through the computer simulation and to suggest alternative option in case the occupant safety is not guaranteed.

Modeling and simulation of large crowd evacuation in hazard-impacted environments

  • Datta, Songjukta;Behzadan, Amir H.
    • Advances in Computational Design
    • /
    • v.4 no.2
    • /
    • pp.91-118
    • /
    • 2019
  • Every year, many people are severely injured or lose their lives in accidents such as fire, chemical spill, public pandemonium, school shooting, and workplace violence. Research indicates that the fate of people in an emergency situation involving one or more hazards depends not only on the design of the space (e.g., residential building, industrial facility, shopping mall, sports stadium, school, concert hall) in which the incident occurs, but also on a host of other factors including but not limited to (a) occupants' characteristics, (b) level of familiarity with and cognition of the surroundings, and (c) effectiveness of hazard intervention systems. In this paper, we present EVAQ, a simulation framework for modeling large crowd evacuation by taking into account occupants' behaviors and interactions during an emergency. In particular, human's personal (i.e., age, gender, disability) and interpersonal (i.e., group behavior and interactions) attributes are parameterized in a hazard-impacted environment. In addition, different hazard types (e.g., fire, lone wolf attacker) and propagation patterns, as well as intervention schemes (simulating building repellent systems, firefighters, law enforcement) are modeled. Next, the application of EVAQ to crowd egress planning in an airport terminal under human attack, and a shopping mall in fire emergency are presented and results are discussed. Finally, a validation test is performed using real world data from a past building fire incident to assess the reliability and integrity of EVAQ in comparison with existing evacuation modeling tools.

A Occupant Load Density and Computer Modelling of Evacuation time in Office Buildings (사무소 건물의 거주밀도 분포와 피난시간 예측)

  • Kim, Un-Hyeong;Rui, Hu;Kim, Hong
    • Fire Science and Engineering
    • /
    • v.13 no.3
    • /
    • pp.35-42
    • /
    • 1999
  • A occupant load density of contemporary office buildings were surveyed by a building w walk through procedure in Korea. The survey results of ten office buildings are range from 1 2 2 2 213.14 m !person 041.4 ft !person) to 22.69 m /person (244.34 ft !person) with 95% confidence l level and the mean occupant load density is 17.92 m2/person 092.87 ft2/야rson). The impacts of occupant load on evacuation flow time was analyzed by applying time-based egress m model, SIMULEX with various occupant load densities from previous studies. I In order to demonstrate the validation of egress modeling method, fire evacuation exercise a and computer simulation were used to simulate the actual evacuation plan for a high-rise office building. An analysis and comparison of the results of these approaches was made to i illustrate the influence of model limitations on the result of prediction The result of the study shows that the introduction of occupant load concept in building c code of Korea is essential to achieving resonable building life safety design in future.

  • PDF