• Title/Summary/Keyword: Egg-laying

Search Result 742, Processing Time 0.017 seconds

The Study of Environmental Risk Assessment for Fluorescent Genetically Modified Silkworms (형광단백질 발현 유전자변형 누에(Bombyx mori )의 환경위해성 평가연구)

  • Kim, Hyunjung;Jung, Chuleui;Goo, Taewon;Yi, Hoonbok
    • Korean journal of applied entomology
    • /
    • v.53 no.3
    • /
    • pp.199-207
    • /
    • 2014
  • It is true that the proper environmental risk assessments for many GM (Genetically Modified) insects almost have not been executed in Korea. Therefore, we tested the environmental risk assessment about GM silkworms if there is any difference between GM silkworms and non-GM silkworms by the following three measurements. First, we measured their mobility in the breeding environment conditions with food and without food. Secondly, we measured their viability at the artificial extreme environmental conditions (low and high temperature and humidity, absent/present of foods,) after escaping from their breeding environments. Thirdly, we observed the number of laying eggs and their hatchability between GM silkworms and non-GM silkworms with four different pair experiments. The mobility of GM silkworms and non-GM silkworms statistically did not differ, and the egg productivity and hatchability were not also different. The hatchability by couple of GM female silkworms and non-GM male silkworms was lower than by non-GM male and female couple between the GM silkworms and non-GM silkworms, and there was statistically different. Relatively, the viability of GM silkworms was lower than non-GM silkworms. We could not exactly test for viability of silkworms in low temperature conditions because of their hibernating. Although there was any difference in viability and hatchability between GM silkworms and non-GM silkworms, all ability of GM silkworms was lower than non-GM silkworms. Conclusively, the environmental risk of GM silkworm was relatively lower than non-GM silkworm in this study.

Current status and future of insect smart factory farm using ICT technology (ICT기술을 활용한 곤충스마트팩토리팜의 현황과 미래)

  • Seok, Young-Seek
    • Food Science and Industry
    • /
    • v.55 no.2
    • /
    • pp.188-202
    • /
    • 2022
  • In the insect industry, as the scope of application of insects is expanded from pet insects and natural enemies to feed, edible and medicinal insects, the demand for quality control of insect raw materials is increasing, and interest in securing the safety of insect products is increasing. In the process of expanding the industrial scale, controlling the temperature and humidity and air quality in the insect breeding room and preventing the spread of pathogens and other pollutants are important success factors. It requires a controlled environment under the operating system. European commercial insect breeding facilities have attracted considerable investor interest, and insect companies are building large-scale production facilities, which became possible after the EU approved the use of insect protein as feedstock for fish farming in July 2017. Other fields, such as food and medicine, have also accelerated the application of cutting-edge technology. In the future, the global insect industry will purchase eggs or small larvae from suppliers and a system that focuses on the larval fattening, i.e., production raw material, until the insects mature, and a system that handles the entire production process from egg laying, harvesting, and initial pre-treatment of larvae., increasingly subdivided into large-scale production systems that cover all stages of insect larvae production and further processing steps such as milling, fat removal and protein or fat fractionation. In Korea, research and development of insect smart factory farms using artificial intelligence and ICT is accelerating, so insects can be used as carbon-free materials in secondary industries such as natural plastics or natural molding materials as well as existing feed and food. A Korean-style customized breeding system for shortening the breeding period or enhancing functionality is expected to be developed soon.