• 제목/요약/키워드: EfiicientNet

검색결과 1건 처리시간 0.016초

EfficientNet의 전이학습을 통한 아스팔트 바인더의 레올로지적 특성 예측 (Prediction of Rheological Properties of Asphalt Binders Through Transfer Learning of EfficientNet)

  • 지봉준
    • 한국건설순환자원학회논문집
    • /
    • 제9권3호
    • /
    • pp.348-355
    • /
    • 2021
  • 도로 포장에 널리 사용되는 아스팔트는 도로가 노출되는 환경에 따라 요구되는 물리적 특성이 상이하다. 이에 따라 첨가제의 배합에 따라 아스팔트가 어떤 물리적 특성을 나타내는지 평가하고 도로의 교통, 기후 환경에 맞추어 적절한 배합을 선택하는 것이 아스팔트 도로의 수명을 확보하기 위해 필수적이다. 아스팔트의 다양한 물리적 특성 중 소성변형에 대한 저항성을 측정하기 위해서는 Dynamic shear rheometer(DSR) 테스트를 주로 사용한다. 하지만 DSR 테스트는 실험 세팅에 따라 결과가 상이하고 특정 온도 범위 내에만 측정이 가능한 단점이 있다. 따라서 본 연구에서는 DSR 테스트의 단점을 극복하고자, Atomic force microscopy로부터 수집된 이미지를 학습하여 레올로지적 특성을 예측하고자 했다. 딥러닝 아키텍처 중 하나인 EfficientNet을 통해 이미지를 학습하였고 딥러닝 모델의 한계인 많은 데이터를 요구한다는 점을 극복하기 위해 전이학습을 이용하여 학습을 진행하였다. 학습된 모델은 이종의 첨가제를 사용하였음에도 높은 정확도로 아스팔트 바인더의 레올로지적 특성을 예측하였다. 특히, 전이학습을 사용하지 않았을 때와 비교하여 빠르게 학습이 가능했다.