• Title/Summary/Keyword: Efflux transport

Search Result 67, Processing Time 0.021 seconds

Effect on the Arginine Transport of Mutant MCAT1, Mouse Cationic Aminoacid Transporter (MCAT1의 돌연변이체가 Arginine 통과 능력에 미치는 영향)

  • Kim, Jung-Woo
    • The Journal of Natural Sciences
    • /
    • v.8 no.2
    • /
    • pp.35-41
    • /
    • 1996
  • To find the substrate interacting site of the MCAT1, charged amino acid residues in the transmembrane domain were changed to opposite charged amino acids and studied the arginine uptake, gp70 binding, efflux and protein expression using the Xenopus oocyte expression method. Among the five mutants of MCAT1, the D403K showed the most interesting characteristics, which had normal gp70 binding but low arginine uptake function, that means the normal expression on the membrane but decreased transport function. All mutants except K211E showed decreased arginine efflux, and kinetic study showed decreased Vmax. Together, Clu(403) residue of MCAT1 may show the possible substrate interacting site in the transmembrane domain of MCAT1.

  • PDF

Effects of Glucagon and Insulin on Glutathione Homeostasis: Role of Cellular Signaling Pathways and Glutathione Transport System (Glucagon과 insulin이 glutathione 항상성에 미치는 영향: 세포신호전달체계 및 glutathione transport system의 역할)

  • Kim, Bong-Hee;Oh, Jung-Min;Yun, Kang-Uk;Kim, Chung-Hyeon;Kim, Sang-Kyum
    • Environmental Analysis Health and Toxicology
    • /
    • v.22 no.3
    • /
    • pp.227-233
    • /
    • 2007
  • It has been reported that hepatic glutathione (GSH) levels are decreased in diabetic patients, and glucagon increases hepatic efflux of GSH into blood. The signaling pathways responsible for mediating the glucagon effects on GSH efflux, however, are unknown. The signaling pathways involved in the regulation of GSH efflux in response to glucagon and insulin were examined in primary cultured rat hepatocytes. The GSH concentrations in the culture medium were markedly increased by the addition of glucagon, although cellular GSH levels are significantly decreased by glucagon. Insulin was also increased the GSH concentrations in the culture medium, but which is reflected in elevations of both cellular GSH and protein. Treatment of cells with 8-bromo-cAMP or dibutyryl-cAMP also resulted in elevation of the GSH concentrations in the culture medium. Pretreatment with H89, a selective inhibitor of protein kinase A, before glucagon addition markedly attenuated the glucagon effect. These results suggest that glucagon changes GSH homeostasis via elevation of GSH efflux, which may be responsible for decrease in hepatic GSH levels observed in diabetic condition. Furthermore, the present study implicates cAMP and protein kinase A in mediating the effect of glucagon on GSH efflux in primary cultured rat hepatocytes.

The Inhibitory Effect of Rivastigmine and Galantamine on Choline Transport in Brain Capillary Endothelial Cells

  • Lee, Na-Young;Kang, Young-Sook
    • Biomolecules & Therapeutics
    • /
    • v.18 no.1
    • /
    • pp.65-70
    • /
    • 2010
  • The blood-brain barrier (BBB) transport of acetylcholinesterase (AChE) inhibitors, donepezil and tacrine suggested to be mediated by choline transport system in our previous study. Therefore, in the present study, we investigated the interaction of other AChE inhibitors, rivastigmine and galantamine with choline transporter at the BBB. The effects of rivastigmine and galantamine on the transport of choline by conditionally immortalized rat brain capillary endothelial cell lines (TR-BBB cells) were characterized by cellular uptake study using radiolabeled choline. The uptake of [$^3H$]choline was inhibited by rivastigmine and galantamine, with $IC_{50}$ values (i.e. concentration necessary for 50% inhibition) for 1.13 and 1.15 mM, respectively. Rivastigmine inhibited the uptake of [$^3H$]choline competitively with $K_i$ of 1.01 mM, but galantamine inhibited noncompetitively. In addition, the efflux of [$^3H$]choline was significantly inhibited by rivastigmine and galantamine. Our results indicated that the BBB choline transporter may be involved in a part of the influx and efflux transport of rivastigmine across the BBB. These findings should be therapeutically relevant to the treatment of Alzheimer's disease (AD) with AChE inhibitors, and, more generally, to the BBB transport of CNS-acting cationic drugs via choline transporter.

Modulation of Phytotropin Receptors by Fluoride and ATP

  • Nam, Myung-Hee;Kang, Bin-G.
    • BMB Reports
    • /
    • v.28 no.6
    • /
    • pp.552-555
    • /
    • 1995
  • Treatment of microsomal vesicles isolated from etiolated Pisum sativum L cv. Alaska epicotyl tissue with agents inhibiting protein dephosphorylation, namely NaF and/or ATP, resulted in increased binding of the phytotropin NPA to the putative auxin efflux carriers localized on the plasma membrane. The phytotropin effect was especially conspicuous if the vesicles were simultaneously treated with Triton X-100. Kinetic analysis of the binding indicated the existance of two distinct sites for NPA, each having different affinities. Increased binding of the phytotropin to the membrane where protein dephosphorylation was inhibited was attributable to the increased ligand affinity of both sites. Treatment of tissue segments with flubride was found to enhance in vivo auxin transport. Implications of covalent modification of the auxin efflux carrier complex for the regulation of membrane transport of auxin molecules are discussed.

  • PDF

The Change of Taurine Transport in Variable Stress States through the Inner Blood-Retinal Barrier using In Vitro Model

  • Kang, Young-Sook;Lee, Na-Young;Chung, Yeon-Yee
    • Biomolecules & Therapeutics
    • /
    • v.17 no.2
    • /
    • pp.175-180
    • /
    • 2009
  • Taurine is the most abundant free amino acid in the retina and transported into retina via taurine transporter (TauT) at the inner blood-retinal barrier (iBRB). In the present study, we investigated whether the taurine transport at the iBRB is regulated by oxidative stress or disease-like state in a conditionally immortalized rat retinal capillary endothelial cell line (TR-iBRB) used as an in vitro model of iBRB. First, [$^3H$]taurine uptake and efflux by TR-iBRB were regulated in the presence of extracellular $Ca^{2+}$. [$^3H$]Taurine uptake was inhibited and efflux was enhanced under $Ca^{2+}$ free condition in the cells. In addition, oxidative stress inducing agents such as tumor necrosis factor-$\alpha$ (TNF-$\alpha$), lipopolysaccharide (LPS), diethyl maleate (DEM) and glutamate increased [$^3H$]taurine uptake and decreased [$^3H$]taurine efflux in TR-iBRB cells. Whereas, 3-morpholinosydnonimine (SIN-1), which is known to NO donor decreased [$^3H$]taurine uptake. Lastly, TR-iBRB cells exposed to high glucose (25 mM) medium and the [$^3H$]taurine uptake was reduced about 20% at the condition. Also, [$^3H$]taurine uptake was decreased by cytochalasin B, which is known to glucose transport inhibitor. In conclusion, taurine transport in TR-iBRB cells is regulated diversely at extracellular $Ca^{2+}$, oxidative stress and hyperglycemic condition. It suggested that taurine would play a role as a retinal protector in diverse disease states.

Ellagic acid, a functional food component, ameliorates functionality of reverse cholesterol transport in murine model of atherosclerosis

  • Sin-Hye Park;Min-Kyung Kang;Dong Yeon Kim;Soon Sung Lim;Il-Jun Kang;Young-Hee Kang
    • Nutrition Research and Practice
    • /
    • v.18 no.2
    • /
    • pp.194-209
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: High levels of plasma low-density lipoprotein (LDL) cholesterol are an important determinant of atherosclerotic lesion formation. The disruption of cholesterol efflux or reverse cholesterol transport (RCT) in peripheral tissues and macrophages may promote atherogenesis. The aim of the current study was to examine whether bioactive ellagic acid, a functional food component, improved RCT functionality and high-density lipoprotein (HDL) function in diet-induced atherogenesis of apolipoproteins E (apoE) knockout (KO) mice. MATERIALS/METHODS: Wild type mice and apoE KO mice were fed a high-cholesterol Paigen diet for 10 weeks to induce hypercholesterolemia and atherosclerosis, and concomitantly received 10 mg/kg ellagic acid via gavage. RESULTS: Supplying ellagic acid enhanced induction of apoE and ATP-binding cassette (ABC) transporter G1 in oxidized LDL-exposed macrophages, facilitating cholesterol efflux associated with RCT. Oral administration of ellagic acid to apoE KO mice fed on Paigen diet improved hypercholesterolemia with reduced atherogenic index. This compound enhanced the expression of ABC transporters in peritoneal macrophages isolated from apoE KO mice fed on Paigen diet, indicating increased cholesterol efflux. Plasma levels of cholesterol ester transport protein and phospholipid transport protein involved in RCT were elevated in mice lack of apoE gene, which was substantially reduced by supplementing ellagic acid to Paigen diet-fed mice. In addition, ellagic acid attenuated hepatic lipid accumulation in apoE KO mice, evidenced by staining of hematoxylin and eosin and oil red O. Furthermore, the supplementation of 10 mg/kg ellagic acid favorably influenced the transcriptional levels of hepatic LDL receptor and scavenger receptor-B1 in Paigen diet-fed apoE KO mice. CONCLUSION: Ellagic acid may be an athero-protective dietary compound encumbering diet-induced atherogenesis though improving the RCT functionality.

Intracellular Mg2+ concentration dependent Mg2+ release in the hearts (심장에서 세포내 Mg2+ 농도 의존적 Mg2+ 유리)

  • Baek, Sung-soo;Kim, Shang-jin;Kim, Jln-shang
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.2
    • /
    • pp.291-299
    • /
    • 2000
  • Magnesium ($Mg^{2+}$) transport across the plasma membrane of cardiac myocytes appears to be under hormonal control. Repeated stimulations with adrenergic or histaminergic agonist produced a progressive decrease in $Mg^{2+}$ efflux from hearts. Thus we hypothesized that the $Mg^{2+}$ efflux may be resulted from a down-regulation of receptors or from a depletion of $Mg^{2+}$ from intracellular pool(s) in the hearts. In the present study, the regulation of $Mg^{2+}$ homeostasis by receptor stimulation was studied in perfused rat and guinea pig hearts. The successive short addition of norepinephrine (NE) to rat and guinea pig, and of histamine (HT) to perfused guinea pig hearts induced a progressive decrease in $Mg^{2+}$ efflux. These $Mg^{2+}$ effluxes were blocked by propranolol or ranitidine, respectively. These decrease in $Mg^{2+}$ efflux were inhibited by sodium cyanide (NaCN), which increases intracellular $Mg^{2+}$ ($[Mg^{2+}]_i$) levels. When NE (or HT) was added after HT (or NE), this efflux was also decreased in the guinea pig hearts. In the rat hearts and myocytes, HT did not stimulate $Mg^{2+}$ efflux. But NE produced a large $Mg^{2+}$ efflux after stimulation with HT. 8-(4-Chlorophenylthio)-adenosine cAMP (cAMP), like NE and HT, also induced a progressive decrease in $Mg^{2+}$ efflux in guinea pig hearts. This effect was inhibited by NaCN. These data provide evidence that the progressive decrease in receptor-stimulated $Mg^{2+}$ efflux is considered to be due to a decrease in $[Mg^{2+}]_i$ levels rather than receptor down-regulation.

  • PDF

Active Transport of Acidic Amino Acids in Suspension Cultured Brassica sp. Cells (배추과 식물현탁배양 세포내에서 산성 아미노산의 능동수송)

  • 조봉희
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.3
    • /
    • pp.137-142
    • /
    • 1995
  • The acidic amino acids, aspartate and glutamate, which have a negative charge in physiological pH, possess the same transport system as neutral amino acids according to the competitive inhibitory studies with the neutral amino acids. The neutral amino acids cotransported with one H+ per molecule, and one K+efflux per one molecule for charge compensation (Cho,1994), but the acidic amino acids cotransported with two H+ per one molecule, and one K+ efflux per one molecule. The active transport system, which possess the same carrier but cotransported with the different number of H+, reported for the first time. from the results, we can see that one of cotransported H+ protonated at first carboxyl group of pK$_3$ of acidic amino acids, and then as a neutral form cotransported with H+ Therefore, Brassica possess two amino acids transport system for 20 amino acids, namely general - and basic amino acids transport system. The evolutionary meaning of amino acid carriers described with other reported plants.

  • PDF

Specific Inhibition of Polar Auxin Transport by n-Octanol in Maize Coleoptiles (옥수수(Zea mays L.) 자엽초 조직 절편에서 n-Octanol에 의한 옥신 극성 이동 억제)

  • 윤인선
    • Journal of Plant Biology
    • /
    • v.36 no.1
    • /
    • pp.67-74
    • /
    • 1993
  • Both polar and gravity-induced lateral transport of auxin was markedly reduced in corn coleoptile segments by octanol treatment. Octanol enhance net auxin uptake without affecting that of benzoic acid, suggesting that the effect did not result from a nonspecific action on general membrane permeability. Since naphthylphthalamic acid (NPA) action on both transport and net uptake of auxin was substantially decreased in the presence of octanol, a specific interaction of octanol with the NPA site (efflux carrier) can be postulated. Studies on in vitro binding of NPA to membrane vesicles indicated that octanol did not interfere with NPA binding. When basipetal transport of auxin was impared by plasmolysis, octanol still inhibited auxin transport in the plasmolyzed tissues. The results ruled out the possibility of octanol acting at the plasmodesmata. Kinetic analysis of growth indicated that IAA-sustained growth was rapidly blocked by octanol implicating a common system by which auxin transport is linked to auxin action. Possible mechanisms for octanol action will be discussed.

  • PDF