• Title/Summary/Keyword: Effluent treatment

Search Result 1,092, Processing Time 0.022 seconds

Semiconductor coupled solar photo-Fenton's treatment of dyes and textile effluent

  • Raji, Jeevitha R.;Palanivelu, Kandasamy
    • Advances in environmental research
    • /
    • v.5 no.1
    • /
    • pp.61-77
    • /
    • 2016
  • $NanoTiO_2$ was synthesized by ultrasonication assisted sol-gel process and subjected to iron doping and carbon-iron codoping. The synthesized catalysts were characterized by XRD, HR-SEM, EDX, UV-Vis absorption spectroscopy and BET specific surface area analysis. The average crystallite size of pure $TiO_2$ was in the range of 30 - 33 nm, and that of Fe-$TiO_2$ and C-Fe $TiO_2$ was in the range of 7 - 13 nm respectively. The specific surface area of the iron doped and carbon-iron codoped nanoparticles was around $105m^2/g$ and $91m^2/g$ respectively. The coupled semiconductor photo-Fenton's activity of the synthesized catalysts was evaluated by the degradation of a cationic dye (C.I. Basic blue 9) and an anionic dye (C.I. Acid orange 52) with concurrent investigation on the operating variables such as pH, catalyst dosage, oxidant concentration and initial pollutant concentration. The most efficient C-Fe codoped catalyst was found to effectively destruct synthetic dyes and potentially treat real textile effluent achieving 93.4% of COD removal under minimal solar intensity (35-40 kiloLUX). This reveals the practical applicability of the process for the treatment of real wastewater in both high and low insolation regimes.

Effect of coagulation conditions on ultrafiltration for wastewater effluent

  • Maeng, Sung Kyu;Timmes, Thomas C.;Kim, Hyun-Chul
    • Membrane and Water Treatment
    • /
    • v.8 no.2
    • /
    • pp.185-199
    • /
    • 2017
  • Low-pressure membrane filtration is increasingly used for tertiary treatment of wastewater effluent organic matter (EfOM), mainly comprising organic base/neutral compounds. In-line coagulation with underdosing, charge neutralization, and sweep floc conditions prior to ultrafiltration (UF) was studied to determine removals of the EfOM components and consequent reduction of fouling using polyethersulfone membranes. Coagulation and UF substantially reduced fouling for all coagulation conditions while removing from 7 to 38% of EfOM organic acids. From 7 to 16% of EfOM organic base/neutrals were removed at neutral pH but there was no significant removal for slightly acid coagulation conditions even though fouling was substantially reduced. Sweep floc produced the lowest resistance to filtration but may be inappropriate for in-line use due to the large added volume of solids. Charge-neutralization resulted in poor recovery of the initial flux with hydraulic cleaning. Under-dosing paralleled sweep floc in reducing hydraulic resistance to filtration (for sub-critical flux) and the initial flux was also easily recovered with hydraulic cleaning. Hydrophobic and hydrophilic base/neutrals were identified on the fouled membranes but as previously reported the extent of fouling was not correlated with accumulation of organic base/neutrals.

Combined Treatment of Livestock Wastewater with Sewage Using Phanerochaete chrysosporium PSBL-1 (Phanerochaete chrysosporium PSBL-1을 이용한 축산폐수와 하수의 연계처리)

  • Lee, Soon-Young;Cho, Hong-Sik;Won, Chan-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.286-291
    • /
    • 2006
  • We studied possibility of mixing treatment of livestock wastewater and sewage using Phanerochaete chrysosporium PSBL-1. Our study showed that 97.6% of SS and 95% of T-P removal efficiency was achieved when 2 mL BF02(a coagulant) and 100 mL C-210EL(a cationic polymer) were added to the mixture(2:1, v/v) of livestock wastewater and sewage. We studied treatment characteristic of Phanerochaete chrysosporium PSBL-1, after were mixed pretreated wastewater and sewage by dillution ten times about livestock wastewater. The removal efficiency of NBDCOD(non-biodegradable COD), $NH_3-N$ and T-N was increased according to increase of pH. That is, T-N concentration of effluent was satisfied 60 mg/L by drain water waterqulity standard of livestock wastewater public treatment facilities with 35 mg/L from a lapse of five days at pH 6.7, 51 mg/L from a lapse of three days at pH 8 and 33 mg/L from a lapse of one day at pH 10. Moreover $COD_{Mn}$ concentration of effluent was satisfied 40 mg/L by drain water waterqulity standard of livestock wastewater public treatment facilities after a laps of one day at all pH. Organics and nitrogen concentrations of effluent were higher case with addition of V.A.(veratryl alcohol) than case without addition of V.A.(veratryl alcohol). $COD_{Mn}$ concentration of effluent satisfied drain water qulity standard of livestock wastewater public treatment facilities from a lapse of one day, when C/N rate(3:1) of influent was not controled. T-N satisfied that from a lapse of two days, when C/N rate was controled with $4{\sim}6$.

Evaluation of Whole Effluent Toxicity (WET) Proficiency Testing for Water Quality Measurement Agencies in Korea (국내 수질측정대행업에 대한 생태독성 숙련도시험 평가)

  • Park, Woo Sang;Kim, Sang Hun
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.4
    • /
    • pp.568-573
    • /
    • 2013
  • In this study, we conducted whole effluent toxicity (WET) proficiency testing based on the results which $EC_{50}$ value of 3 types (A, B, C) unknown samples calculated from 32 water quality measurement agencies in Korea. WET proficiency testing was expected to their improve of analysis skill and ensure reliability of analysis results. Ultimately, it is intended to promote the reliable enforcement of WET. WET proficiency testing was evaluated using the z-score, robust z-score and the results showed that 30 participating agencies were "compliance". In addition, $EC_{50}$ values of "unknown sample A" were the normal distribution. Therefore, "unknown sample A" was considered as the most suitable standard toxicity substance.

Bioindicator in Advanced Wastewater Plants (고도처리장의 Bioindicator)

  • Lee Chan-Hyung;Moon Kyung-Suk;Jin Ing-Nyol
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.1
    • /
    • pp.56-64
    • /
    • 2005
  • The occurrence and abundance of protozoa at advanced wastewater treatment plant were compared with operating parameters and effluent quality using statistical procedures. It seemed that plant operating conditions influenced the distribution of protozoa in the mixed liquor. In statistical analysis, the distribution of protozoa showed the operating condition of plant and predicted effluent quality. Once enough data concerning protozoa, operating parameters and effluent has been gathered, the operator has a valuable tool for predicting plant performance and near-future effluent quality based on microscopic examination. Plant operator manipulates operating conditions if he knows near-future effluent quality is deteriorating. Perhaps more importantly it can be used to actually control the plant to adjust the operating conditions to obtain the protozoal populations that have been shown to provide the best effluent quality.

Effect of Hydrogen Peroxide on UV Treatment of Color in Secondary Effluent for Reclamation (물 재이용을 위한 하수처리장 방류수 색도의 자외선처리에 미치는 과산화수소의 영향)

  • Park, Ki-Young;Maeng, Sung-Kyu;Kim, Ki-Pal;Lee, Seock-Heon;Kweon, Ji-Hyang;Ahn, Kyu-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.3
    • /
    • pp.377-384
    • /
    • 2004
  • In the present study, a feasibility of an advanced oxidation process using UV/Hydrogen peroxide($H_2O_2$) system equipped with a medium pressure lamp for secondary effluent reclamation was investigated. Initial concentration of $H_2O_2$ and pH were changed to determine the optimum operation condition for the system. The removal efficiency of color was than 80% with 14.3mg/L of initial $H_2O_2$ and 5 minute of contact time in the UV/$H_2O_2$ system. The color removal was analyzed using first-order reaction equation. The dependence of rate constant (k) on initial $H_2O_2$ represented the rational relationship with maximum value. Residual $H_2O_2$ caused increase of effluent COD, since analyzing agent, dichromate, reacted with $H_2O_2$ in the sample. Therefore, excess initial concentration of $H_2O_2$ would significantly affect effluent COD measurement. At pH variation experiment, both residual $H_2O_2$ and color showed peak in the neutral pH range with the same pattern. Effect of $H_2O_2$ dose also enhanced color removal but raised residual $H_2O_2$ problem in the continuous operation UV system. In conclusion, these results indicated that medium pressure UV/$H_2O_2$ system could be used to control color in the secondary effluent for reclamation and reuse.

A Study on Water Environment and Benthic Macroinvertebrate Community in Reclaimed Wastewater Effluent Dominated Stream (하수처리수 방류 하천의 물환경과 저서성 대형무척추동물 군집 생태 연구)

  • Son, Jung-Won;Kwag, Jin-Suk;Cho, Gab-Je;Ryou, Dong-Choon
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.3
    • /
    • pp.190-203
    • /
    • 2021
  • Water quality, benthic macroinvertebrate communities, and other factors were investigated to explore the effects of the effluent discharge from a sewage treatment plant into Jwagwang stream in Busan in 2019. During the study period, the flow rate of this stream was in the range of 10,400 m3/day to 52,200 m3/day except for the discharge of about 24,000 m3/day of the effluent. After discharge, the flow velocity increased by about 65% and the water depth increased by about 40%. At sites downstream of the discharge point, BOD, COD, TOC, T-N, T-P, and other water quality values were worse than those of the upstream sites. The periphytic algal chlorophyll-a concentrations in the natural substrata were higher than those of the upstream sites, especially in May and August. However, at sites downstream of the discharge point, the individual numbers of Annelida were decreased and individual numbers of the insecta of arthropoda were increased. Also, species numbers and the diversity and dominance indexes were improved in the sites downstream of the discharge point. The functional feeding groups (FFGs) of collector-filterers were increased and the habitat orientation groups (HOGs) of sprawlers, burrowers, and clingers were especially increased at the sites with additional reclaimed wastewater effluent flow. Regardless of the effluent discharge, BMI, an indicator of ecological stream health using benthic macroinvertebrate species, did not show large gaps between the study points. Although the water quality of the sites downstream of the discharge point was much worse than those upstream, their ecosystem soundness was better than those of the upstream sites from an ecological perspective.

A Study on the Application of Natural Zeolite as Coagulant Aid for Effluent Quality Improvement in Private Sewage Treatment Facility (개인하수처리시설 처리수의 수질 개선을 위한 응집보조제로서의 천연제올라이트 적용에 관한 연구)

  • Choi, Jung Su;Joo, Hyun Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.121-128
    • /
    • 2012
  • The purpose of this study is to solve the problem of nutrient removal due to rapid hydraulic retention time (HRT) variation in small size private sewage treatment facility and to have better effluent quality by using natural zeolite as a coagulant aid. The experiments were conducted by applying different conditions of HRT, coagulant, and zeolite dosages. As an experimental result, $TBOD_{5}$, TSS, and TP removal efficiencies were 64.9%, 94.5%, and 98.8% at co-injection with zeolite. Overall removal efficiencies of $TBOD_{5}$, TSS, and TP have improved 15.7, 28.7, 6.1%, respectively. This result shows that zeolite addition could improve flocculation, increase setting velocity, and thus have better treatment. Therefore the use of zeolite as a coagulant aid can be useful in small size private sewage treatment facility, where especially extra nutrient removal is required to meet the legal standard for discharge.

The removal of nitrogen & phoshorus for the swine wastewater by VSEP membrane system (진동막 분리장치를 이용한 축산폐수의 질소.인 제거에 관한 연구)

  • 지은상;김재우;신대윤
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.3
    • /
    • pp.31-36
    • /
    • 2000
  • Conventional membrane systems was difficults to treatment for the swine waste water. Technological advances in membrane filtration systems have created opportunity for the swine wastewater to treat effluent streams in order to meet stricter environmental constraints. "Vibratory Shear Enhanced Processing(VSEP)" developed by new logic international makes it possible to filter effluent streams without the fouling problem exhibited by conventional membrane systems. Various kinds of waste water occurred to and swine wastewater experiment with "VSEP" set up conventional reverse osmosis membrane (ACM-4, ESPA, BW-30). The results were as followes : Treatment efficiency for the input COD(From $332mg/{\ell}$ to $4,968mg/{\ell}$) was 98%. Treatment efficiency for the input SS(From $140mg/{\ell}$ to $4,040mg/{\ell}$) was 100%(All together). Treatment efficiency for the input T-N(From $155mg/{\ell}$ to $934mg/{\ell}$) was 97%~99.8%. Treatment efficiency for the input T-P(From $28.6mg/{\ell}$ to $132mg/{\ell}$) was 99.7% and up. ESPA membrane excels three types of reverse osmosis membranes applied VSEP in removal efficiency.

  • PDF

Application of tube-type ceramic microfiltration membrane for post-treatment of effluent from biological wastewater treatment process using phase separation

  • Son, Dong-Jin;Kim, Woo-Yeol;Yun, Chan-Young;Kim, Dae-Gun;Chang, Duk;Sunwoo, Young;Hong, Ki-Ho
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.377-383
    • /
    • 2017
  • A tube-type ceramic membrane for microfiltration was developed, and the membrane module comprised of three membranes was also applied to biological carbon and nitrogen removal processes for post-treatment. Manufacturing the microfiltration membrane was successful with the structure and boundary of the coated and support layers within the membrane module clearly observable. Total kjeldahl nitrogen removal from effluent was additionally achieved through the elimination of solids containing organic nitrogen by use of the ceramic membrane module. Removal of suspended solids and colloidal substances were noticeably improved after membrane filtration, and the filtration function of the ceramic membrane could also easily be recovered by physical cleaning. By using the ceramic membrane module, the system showed average removals of organics, nitrogen, and solids up to 98%, 80% and 99.9%, respectively. Thus, this microfiltration system appears to be an alternative and flexible option for existing biological nutrient removal processes suffering from poor settling performance due to the use of a clarifier.