• Title/Summary/Keyword: Effluent concentration

Search Result 795, Processing Time 0.021 seconds

A Study on the Treatment of Paper Making Wastewater Using Submerged biological Film Process (침적 생물막법에 의한 제지폐수처리에 관한 연구)

  • Lee, Tae-Ho;Eun, Jong-Geuk
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.3
    • /
    • pp.23-30
    • /
    • 2008
  • This study was carried out to get efficient of nutrient removal effects on the treatment of paper making wastewater using submerged biological film process. The concentration of average BOD at raw wastewater was $324mg/{\ell}$ and COD was $435mg/{\ell}$. The average BOD of effluent was maintained $24.2mg/{\ell}$ and average COD was $37mg/{\ell}$. The concentration of average T-N at raw wastewater was $16.5mg/{\ell}$ and T-P was $1.2mg/{\ell}$. The average T-P of effluent was maintained $2.3mg/{\ell}$ and average T-P was $0.08mg/{\ell}$. The concentration of average SS at influent wastewater was $263mg/{\ell}$. The average SS of effluent was maintained $28.2mg/{\ell}$. The result of this experiment was wastage sludge did generated and the removal efficiency of nutrients were kept equilibrium.

Survey of the Secondary Effluents from Municipal Wastewater Treatment Plants in Korea (우리나라 하수처리장 방류수 수질현황 및 특성)

  • Kim, Youngchul;An, Ik-Sung;Kang, Min-Gi
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.2
    • /
    • pp.158-168
    • /
    • 2005
  • In this study, the discharging effluents from have been 9 municipal wastewater treatment plants surveyed for 1 year-period. Statistics including probability distribution, cumulative occurrence concentration and other statistical parameters were presented. In addition, treatment performance and its stability were also discussed. Most of the plants, have an operational problem of high soluble organic content in the secondary effluent which may be associated with the integrated treatment of human and livestock manures. Nitrogen concentration in the effluents were usually higher during the period of summer and winter. It was found that this is mainly due to lack of the proper C/N ratio during the summer, or/and the effects of low temperature and less dilution by dry weather during the winter. Phosphorus concentration is sharply increased in June. Discussion with plant operators told that it is due to the dissolution of phosphate from the sludge accumulated in the primary settling tanks from the early spring to june. During this period, usually, sludge treatment line is highly overloaded with flush-outs of the sediments also stored in the bottom of combined sewer due to the low flow during winter season. Most of the plants can meet new effluent discharge limits of the nitrogen and phosphorus, and total coliform without further treatment.

Improvement of Organics and Nitrogen Removal by HRT and Recycling Rate in Air Lift Reactors (공기부상반응조에서 체류시간과 반송율에 의한 유기물질 및 질소제거 향상에 관한 연구)

  • Kim, Jin-Ki;Yu, Sung-Whan;Lim, Bong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.45-50
    • /
    • 2006
  • This study was performed to evaluate the air lift reactors (ALR) by variations of HRT and recycling rate. Air lift reactor was composed of bioreactor and clarifier above it. To remove organic matters and nitrogen through the formation of microbic film and filtration, bio-filter reactors were filled with clay, glass, bead, waste plastic, respectively. Influent wastewater was fed to biofilter reactor, and effluent wastewater from bio-filter reactor was injected ALR again, instead of adding external carbon source. Effluent BOD concentration was satisfied with lower than 10 mg/L in recycling rate 100% regardless of the variation of HRT and the kinds of media materials. In HRT 4 hr, recycling rate 100%, BOD removal efficiency rate was from about 85 to 90%, COD removal efficiency rate was higher than 90%. Effluent TN concentration was satisfied with less than 20 mg/L, if HRT was maintained by over than 6 hr regardless of recycling rate and media materials. Over than HRT was 4 hr, microbes concentration in air lift reactor was maintained over than 2,500 mg/L constantly, not sensitive to environmental condition, and organic removal was effective as it was higher.

Potential of a Bioelectrochemical Technology for the Polishing of Domestic Wastewater Treatment Plant Effluent (생물전기화학기술을 이용한 하수처리장 방류수 수질개선 가능성)

  • Song, Young-Chae;Oh, Gyung-Geun
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.4
    • /
    • pp.351-359
    • /
    • 2015
  • The study on the improvement of discharge water quality from domestic wastewater treatment plant (DWTP) was performed in a filter type bioelectrochemical system. The COD removal efficiency for a synthetic discharge water was about 88%, and the effluent COD was less than 5mg/L. The nitrification efficiency of the bioelectrochemical system was over 97%, but a considerable amount of the nitrogen was remained as nitrate form in the effluent. The total nitrogen removal efficiency was only around 30%. There are no significant differences in the removal of COD and nitrogen at 0.6 and 0.8V of the applied voltages between anode and cathode. The removal of COD and nitrogen in the system were quite stable when the HRT ranged from 60 to 15 minutes, and at 10 minutes of HRT, the nitrification efficiency was slightly decreased. The performance of the bioelectrochemical system has quickly recovered from the shocks in the influent due to high concentration of COD and nitrogen. For the effluent that discharged from the DWTP, the removal efficiencies of COD and total nitrogen from the bioelectrochemical system were 50 and 30%, respectively. Thus the bioelectrochemical system was a feasible process for further polishing the effluent quality from DWTP.

An Ecological Restoration of Treatment Wetland and Urban Upper Stream for Reusing Sewage Treatment Water - In the case of Sustainable Structured Wetland Biotop System at Upper Part of Jaemin Stream in Gongju-si, Korea - (하수처리수의 재이용을 위한 처리습지 및 도시 상류하천 생태환경복원 - 공주시 제민천 생태적수질정화비오톱을 중심으로 -)

  • Byeon, Chan-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.5
    • /
    • pp.65-77
    • /
    • 2014
  • The ecosystem of Jaemin stream, flowing into the center of Gongju-si, had been damaged by low water quality and lack of water quantity of the steam. However, after applying the SSB (Sustainable Structured wetland Biotop) system to the flood plain and the upstream of Jaemin stream, the efficiency of ecological water purification and ecological restoration are as follows. Through the constant maintenance and monitoring from year 2009 to year 2013 after restorative design and construction the average influent concentration of BOD5 was 4.2 mg/L, and the average effluent concentration was 1.8 mg/L, reaching ecological water purification rate of 57%. As for the T-N, the average influent concentration was 9.983 mg/L, and the average effluent concentration was 6.303 mg/L, showing the rate of 37%. For the T-P, the average influent concentration was 0.198 mg/L, and the average effluent concentration was 0.098 mg/L, being the rate of 51%. The vegetation of Jaemin stream monitored for 2 years after the restoration was composed of 51 species in 28 families which show high ratio of planted native species. As for the animals in the site, 5 species in 3 families of reptiles and amphibians, 34 species of 23 families of birds, and 3 species in 2 families of mammals were monitored, indicating that the bio-diversity of the site has improved, as well.

Development of high-hydrophilic Biofilter for Decentralized Regions and Rural Communities (분산지역의 생활하수 처리를 위한 고친수성 Biofilter 개발)

  • Kwon, Tae-Young;Yoon, Chun-Gyeong;Jung, Kwang-Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.678-686
    • /
    • 2006
  • The feasibility of the high-hydrophilic biofilter was examined for application in rural wastewater treatment in Korea. The intermittent trickling biofiter was developed for wastewater treatment of media and examined instantaneous wetting water and immersional wetting water. Melamin foam absorbed 120 times it's weight in water and maintained wetting status than other materials. These characteristics are improvement for application in rural areas showing large variance of amount of influent. The biofilter process was effective in treating organic pollutants; mean removal efficiencies of $BOD_5$ and TSS were above 80%. The average SS concentrations of effluent was showed below $10mg/L^{-1}$ and meet guidelines in special regions, however, the average concentration of $BOD_5$ was about $20mg/L^{-1}$. The removals of T-N and T-P were relatively less effective and removal efficiencies were below 40%. It might meet the guidelines for T-P because of low levels of influent T-P concentration. However, the T-N concentration were too high and further treatment is required. The effluent concentration of $NH_4-N$ showed a significant reduction rate about 43.8%, but part of $NH_4-N$ was transformed to $NO_2-N$ and $NO_3-N$ inside the biofilter through nitrification process. The effluent concentration of org-P was removed about 78.8% of influent concentration by filtration. Considering stable performance and effective removal of pollutant in wastewater, low maintenance, and cost-effectiveness, the hydrophilic biofilter system was thought to be an effective and feasible alternative for decentralized rural areas.

Manganese Removal of Bank Filtrate using Manganese Sand Filtration (망간모래여과를 이용한 강변여과수의 망간제거)

  • Kim, Chung-Hwan;Kim, Hak-Chul;Kim, Han-Seung;Kim, Berm-Soo;Ahn, Hyo-Won
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.409-414
    • /
    • 2004
  • Pilot-scale experiments were performed for the treatment of bank filtrate contammg high manganese concentration around 2mg/L using rapid manganese sand filtration to investigate effects of oxidant dose and pH control on the removal efficiency of manganese. For theoretical dose ranges of oxidant (sodium hypochlorite) between 3 and 4mg/L, the manganese concentration of effluent was 0.57 mg/L, which corresponded to 72.5% removal and was higher than drinking water quality standards of 0.3mg/L. For excess dose ranges of oxidant between 4 and 8mg/L, the manganese concentration of effluent was reduced to 0.14mg/L, which corresponded to 94.5% removal, but the residual chlorine concentration was over 1.0mg/L. On the other hand, manganese removal efficiency drastically increased up to the value of 98.0%, which is equivalent to the effluent concentration of 0.03mg/L by controling pH to the range between 7 and 8 for the theoretical dose of oxidant. Consequently, these results indicated that appropriate dose of chemicals, such as oxidant and alkali, and continuous monitoring of manganese should be necessary to obtain efficient removal of manganese and to optimize the maintenance of treatment facilities for the treatment of bank filtrate with high concentration of manganese.

Management of Nonpoint Sources in Watershed - with reference to Daechong Reservoir in Korea (수계의 비점오염원 관리 - 대청호를 중심으로)

  • Lee, Jong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.3
    • /
    • pp.163-176
    • /
    • 2000
  • The purpose of this study is to analyze the pollutant loads and its distribution, and to suggest the management of nonpoint sources in Daechong Reservoir. The loads from point and nonpoint sources such as population, industry, livestock and land use were calculated per stream or river with topography(1:25,000) of the watershed of Daechong Reservoir. The generating pollutant loads were obtained through multiplication of pollutant sources by generating pollutant quantity per unit pollutant source. The effluent point sources loads is defined as loads from wastewater treatment facilities such as domestic, industrial and livestock wastewater treatment facilities, which were calculated through multiplication of effluent flowrates by water quality constituents concentration. Untreated point sources loads were estimated to be 35 % of total point sources loads. The effluent nonpoint sources pollutant loads were obtained through the multiplication of generating nonpoint sources loads by effluent ratios based on previous studies. The effluent nonpoint sources loads have the ratio of 26.2% of total BOD effluent loadings, 20.1% of total T-N effluent loadings, and 10.5% of total T-P effluent loadings. For the reduction of nonpoint sources loads in Daechong Reservoir, silviculture, artificial wet land, and grassed waterways could be applied. And untreated livestock waste scattered can result in nonpoint loadings, so required the livestock wastes treatment facilities and purifying facilities together with the management of shed, pasture, livestock waste storage site and composting site. Finally, remote sensing and GIS should be applied to the identification of distribution of water quality, watershed, the location and scale of nonpoint sources, effluent process during rainfall, for more detailed analysis of nonpoint sources.

  • PDF

Waste Water Treatment Using Constructed Wetland and Pond System (인공습지와 연못시스템을 이용한 오수처리)

  • Kim, Min-Hee;Yoon, Chun-Gyeong;Ham, Jong-Hwa
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.470-474
    • /
    • 2001
  • A pilot study was performed at the experimental field of Konkuk University in Seoul, to examine the waste water treatment using constructed wetland and pond system. The effluent of the wetland system in winter often exceeded effluent water quality standards for sewage treatment plant, therefore, pond system could be applied to additional system. As a result, removal rate of $BOD_{5}$, SS was 84.4%, 81.5% and effluent concentration was 4.6mg/L and 5.0mg/L respectively, when surface water of pond system was discharged in March. So we concluded that pond system stored wetland effluent in winter and discharged surface water of pond system in March, so met water quality standard.

  • PDF

Generation characteristics of disinfection by-products (DBPs) by chlorination in sewage effluent (하수처리장 방류수의 염소소독부산물 발생 특성)

  • Seo, Hee-Jeong;Kim, Jong-Min;Min, Kyoung-Woo;Kang, Yeoung-Ju;Paik, Kye-Jin;Park, Jong-Tae;Kim, Seong-Jun
    • Analytical Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.272-276
    • /
    • 2009
  • This study was performed to investigate the disinfection efficiency and the generation characteristics of disinfection by-products (DBPs) in the sewage effluent. In the case of total coliforms, disinfection efficiency higher than 99%, the required contact time was 30 min at chlorine dose of 0.5 mg/L, 20 min at 1.0 mg/L, and 10 min at 1.5 mg/L, respectively. When the sewage effluent was disinfected with chlorine dose of 0.5 mg/L for 10 min, the maximum generation concentration of trihalomethanes (THMs), haloacetonitriles (HANs) and haloacetic acid (HAAs) were $32.2{\mu}g/L$, $2.97{\mu}g/L$, and $16.29{\mu}g/L$, respectively. The concentration of chloroform was $28.4{\mu}g/L$ corresponding to 88.1% of the THMs. The concentration of HANs and HAAs were found to be inconsiderable. The average residual chlorine concentration of sewage effluent was 0.4 mg/L, the generation concentration of THMs was maximum $1.72{\mu}g/L$ and average $2.79{\mu}g/L$. HANs and HAAs were under the detection limit by GC/MSD.