• Title/Summary/Keyword: Efficient vector labeling algorithm

Search Result 2, Processing Time 0.023 seconds

An Algorithm for Searching Pareto Optimal Paths of HAZMAT Transportation: Efficient Vector Labeling Approach (위험물 수송 최적경로 탐색 알고리즘 개발: Efficient Vector Labeling 방법으로)

  • Park, Dong-Joo;Chung, Sung-Bong;Oh, Jeong-Taek
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.49-56
    • /
    • 2011
  • This paper deals with a methodology for searching optimal route of hazard material (hazmat) vehicles. When we make a decision of hazmat optimal paths, there is a conflict between the public aspect which wants to minimize risk and the private aspect which has a goal of minimizing travel time. This paper presents Efficient Vector Labeling algorithm as a methodology for searching optimal path of hazmat transportation, which is intrinsically one of the multi-criteria decision making problems. The output of the presented algorithm is a set of Pareto optimal paths considering both risk and travel time at a time. Also, the proposed algorithm is able to identify non-dominated paths which are significantly different from each other in terms of links used. The proposed Efficient Vector Labeling algorithm are applied to test bed network and compared with the existing k-shortest path algorithm. Analysis of result shows that the proposed algorithm is more efficient and advantageous in searching reasonable alternative routes than the existing one.

Study on the Development of Auto-classification Algorithm for Ginseng Seedling using SVM (Support Vector Machine) (SVM(Support Vector Machine)을 이용한 묘삼 자동등급 판정 알고리즘 개발에 관한 연구)

  • Oh, Hyun-Keun;Lee, Hoon-Soo;Chung, Sun-Ok;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.36 no.1
    • /
    • pp.40-47
    • /
    • 2011
  • Image analysis algorithm for the quality evaluation of ginseng seedling was investigated. The images of ginseng seedling were acquired with a color CCD camera and processed with the image analysis methods, such as binary conversion, labeling, and thinning. The processed images were used to calculate the length and weight of ginseng seedlings. The length and weight of the samples could be predicted with standard errors of 0.343 mm, and 0.0214 g respectively, $R^2$ values of 0.8738 and 0.9835 respectively. For the evaluation of the three quality grades of Gab, Eul, and abnormal ginseng seedlings, features from the processed images were extracted. The features combined with the ratio of the lengths and areas of the ginseng seedlings efficiently differentiate the abnormal shapes from the normal ones of the samples. The grade levels were evaluated with an efficient pattern recognition method of support vector machine analysis. The quality grade of ginseng seedling could be evaluated with an accuracy of 95% and 97% for training and validation, respectively. The result indicates that color image analysis with support vector machine algorithm has good potential to be used for the development of an automatic sorting system for ginseng seedling.