• Title/Summary/Keyword: Efficient solutions

Search Result 1,288, Processing Time 0.026 seconds

A Study on the Sparse Matrix Method Useful to the Solution of a Large Power System (전력계통 해석에 유용한 "스파스"행렬법에 관한 연구)

  • 한만춘;신명철
    • 전기의세계
    • /
    • v.23 no.3
    • /
    • pp.43-52
    • /
    • 1974
  • The matrix inversion is very inefficient for computing direct solutions of the large spare systems of linear equations that arise in many network problems as a large electrical power system. Optimally ordered triangular factorization of sparse matrices is more efficient and offers the other important computational advantages in some applications with this method. The direct solutions are computed from sparse matrix factors instead of a full inverse matrix, thereby gaining a significant advantage is speed and computer memory requirements. In this paper, it is shown that the sparse matrix method is superior to the inverse matrix method to solve the linear equations of large sparse networks. In addition, it is shown that the sparse matrix method is superior to the inverse matrix method to solve the linear equations of large sparse networks. In addition, it is shown that the solutions may be applied directly to sove the load flow in an electrical power system. The result of this study should lead to many aplications including short circuit, transient stability, network reduction, reactive optimization and others.

  • PDF

DEVELOPMENT OF AN HIGH-ORDER IMPLICIT DISCONTINUOUS GALERKIN METHOD ON UNSTRUCTURED MESHES (비정렬 격자계에서 고차 정확도의 내재적 불연속 갤러킨 기법의 개발)

  • Lee, H.D.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.12 no.3
    • /
    • pp.29-40
    • /
    • 2007
  • An implicit discontinuous Galerkin method for the two-dimensional Euler equations was developed on unstructured triangular meshes. The method can achieve high-order spatial accuracy by using hierachical basis functions based on Legendre polynomials. Numerical tests were conducted to estimate the convergence order of numerical solutions to the Ringleb flow and the supersonic vortex flow for which analytic solutions are available. Also, the flows around a 2-D circular cylinder and an NACA0012 airfoil were numerically simulated. The numerical results showed that the implicit discontinuous Galerkin methods couples with a high-order representation of curved solid boundaries can be an efficient method to obtain very accurate numerical solutions on unstructured meshes.

DEVELOPMENT OF A HIGH-ORDER IMPLICIT DISCONTINUOUS GALERKIN METHOD FOR SOLVING COMPRESSIBLE NAVIER-STOKES EQUATIONS (압축성 Navier-Stokes 방정식 해를 위한 고차 정확도 내재적 불연속 갤러킨 기법의 개발)

  • Choi, J.H.;Lee, H.D.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.72-83
    • /
    • 2011
  • A high-order discontinuous Galerkin method for the two-dimensional compressible Navier-Stokes equations was developed on unstructured triangular meshes. For this purpose, the BR2 methd(the second Bassi and Rebay discretization) was adopted for space discretization and an implicit Euler backward method was used for time integration. Numerical tests were conducted to estimate the convergence order of the numerical solutions of the Poiseuille flow for which analytic solutions are available for comparison. Also, the flows around a flat plate, a 2-D circular cylinder, and an NACA0012 airfoil were numerically simulated. The numerical results showed that the present implicit discontinuous Galerkin method is an efficient method to obtain very accurate numerical solutions of the compressible Navier-Stokes equations on unstructured meshes.

Exact Algorithms of Transforming Continuous Solutions into Discrete Ones for Bit Loading Problems in Multicarrier Systems

  • Chung, Yong-Joo;Kim, Hu-Gon
    • Management Science and Financial Engineering
    • /
    • v.16 no.3
    • /
    • pp.71-84
    • /
    • 2010
  • In this study, we present the exact methods of transforming the continuous solutions into the discrete ones for two types of bit-loading problem, marginal adaptive (MA) and rate adaptive (RA) problem, in multicarrier communication systems. While the computational complexity of existing solution methods for discrete optimal solutions depends on the number of bits to be assigned (R), the proposed method determined by the number of subcarriers (N), making ours be more efficient in most cases where R is much larger than N. Furthermore our methods have some strength of their simpler form to make a practical use.

Static and free vibration behavior of functionally graded sandwich plates using a simple higher order shear deformation theory

  • Zouatnia, Nafissa;Hadji, Lazreg
    • Advances in materials Research
    • /
    • v.8 no.4
    • /
    • pp.313-335
    • /
    • 2019
  • The objective of the present paper is to investigate the bending and free vibration behavior of functionally graded material (FGM) sandwich rectangular plates using an efficient and simple higher order shear deformation theory. Unlike other theories, there are only four unknown functions involved, as compared to five in other shear deformation theories. The most interesting feature of this theory is that it does not require the shear correction factor. Two common types of FGM sandwich plates are considered, namely, the sandwich with the FGM facesheet and the homogeneous core and the sandwich with the homogeneous facesheet and the FGM core. The equation of motion for the FGM sandwich plates is obtained based on Hamilton's principle. The closed form solutions are obtained by using the Navier technique. A static and free vibration frequency is given for different material properties. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

Analytical modeling of bending and free vibration of thick advanced composite beams resting on Winkler-Pasternak elastic foundation

  • Chami, Khaldoune;Messafer, Tahar;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • v.19 no.2
    • /
    • pp.91-101
    • /
    • 2020
  • This work presents an efficient and original hyperbolic shear deformation theory for the bending and dynamic behavior of functionally graded (FG) beams resting on Winkler - Pasternak foundations. The theory accounts for hyperbolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. Based on the present theory, the equations of motion are derived from Hamilton's principle. Navier type analytical solutions are obtained for the bending and vibration problems. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions. It can be concluded that the present theory is not only accurate but also simple in predicting the bending and vibration behavior of functionally graded beams.

Classes of exact solutions for several static and dynamic problems of non-uniform beams

  • Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.1
    • /
    • pp.85-100
    • /
    • 2001
  • In this paper, an analytical procedure for solving several static and dynamic problems of non-uniform beams is proposed. It is shown that the governing differential equations for several stability, free vibration and static problems of non-uniform beams can be written in the from of a unified self-conjugate differential equation of the second-order. There are two functions in the unified equation, unlike most previous researches dealing with this problem, one of the functions is selected as an arbitrary expression in this paper, while the other one is expressed as a functional relation with the arbitrary function. Using appropriate functional transformation, the self-conjugate equation is reduced to Bessel's equation or to other solvable ordinary differential equations for several cases that are important in engineering practice. Thus, classes of exact solutions of the self-conjugate equation for several static and dynamic problems are derived. Numerical examples demonstrate that the results calculated by the proposed method and solutions are in good agreement with the corresponding experimental data, and the proposed procedure is a simple, efficient and exact method.

Voltage Stability Analysis of AC/DC Systems (AC/DC 계통의 전압안정도 해석)

  • Nam, Hae-Kon;Kim, Yong-Hak
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.89-91
    • /
    • 1995
  • This paper describes an extension or a pair or multiple load flow solutions and nose curve method developed for voltage stability analysis or AC power systems to AC/DC systems. In this approach the converters are regarded as voltage dependent loads. Assuming that the converters at the unstable (-mode) solution consume the same power equal to the power at the stable (+mode) solution, the unstable solutions or the nose curves arc determined. This method is very efficient since estimating voltage collapse point and voltage stability margin arc determined by a few iterations of multiple load flow solutions. Also the method has the advantages that since the structure or Jacobian matrix is same with that of AC load flow, modal analysis or voltage stability is readily applicable if desired.

  • PDF

DEVELOPMENT OF IMPLICIT DISCONTINUOUS GALERKIN METHOD ON UNSTRUCTURED MESHES (비정렬 격자계에서 내재적 불연속 갤러킨 기법의 개발)

  • Lee, H.D.;Kwon, O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.30-40
    • /
    • 2007
  • The implicit discontinuous Galerkin method for the two-dimensional Euler equations was developed on unstructured triangular meshes, which can achieve higher-order accuracy by wing hierachical basis functions based on Legendre polynomials. Numerical tests were conducted to estimate the convergence order of numerical solutions to the Ringleb flow and the supersonic vortex flow for which analytic solutions are available. And, the flows around a circle and a NACA0012 airfoil was also numerically simulated. Numerical results show that the implicit discontinuous Galerkin methods with higher-order representation of curved solid boundaries can be an efficient higher-order method to obtain very accurate numerical solutions on unstructured meshes.

  • PDF

Derivation of Real Values from Imaginary Roots by Altering Prescribed Positions in the Precision Point Synthesis of Mechanisms (정밀점 기구합성시 지정위치의 변경을 이용한 허근의 실수화 방법)

  • 이태영;심재경;이재길
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.196-202
    • /
    • 2000
  • In the precision point synthesis of mechanisms, it is usually required to solve a system of polynomial equations. With the aid of efficient algorithms such as elimination, it is possible to obtain all the solutions of the equations in the complex domain. But among these solutions only real values can be used fur real mechanisms, while imaginary ones are liable to be discarded. In this article, a method is presented, which leads the imaginary solutions to real domain permitting slight alteration of prescribed positions and eventually increases the number of feasible mechanisms satisfying the desired motion approximately. Two synthesis problems of planar 4-bar path generation and spatial 7-bar motion generation are given to verify the proposed method.

  • PDF