• 제목/요약/키워드: Efficient neutron diffusion calculations

검색결과 2건 처리시간 0.014초

A new moving-mesh Finite Volume Method for the efficient solution of two-dimensional neutron diffusion equation using gradient variations of reactor power

  • Vagheian, Mehran;Ochbelagh, Dariush Rezaei;Gharib, Morteza
    • Nuclear Engineering and Technology
    • /
    • 제51권5호
    • /
    • pp.1181-1194
    • /
    • 2019
  • A new moving-mesh Finite Volume Method (FVM) for the efficient solution of the two-dimensional neutron diffusion equation is introduced. Many other moving-mesh methods developed to solve the neutron diffusion problems use a relatively large number of sophisticated mathematical equations, and so suffer from a significant complexity of mathematical calculations. In this study, the proposed method is formulated based on simple mathematical algebraic equations that enable an efficient mesh movement and CV deformation for using in practical nuclear reactor applications. Accordingly, a computational framework relying on a new moving-mesh FVM is introduced to efficiently distribute the meshes and deform the CVs in regions with high gradient variations of reactor power. These regions of interest are very important in the neutronic assessment of the nuclear reactors and accordingly, a higher accuracy of the power densities is required to be obtained. The accuracy, execution time and finally visual comparison of the proposed method comprehensively investigated and discussed for three different benchmark problems. The results all indicated a higher accuracy of the proposed method in comparison with the conventional fixed-mesh FVM.

A Study on the Application of Analytic Nodal Method to a CANDU-600 Reactor Analysis

  • C.S. Yeom;Ryu, H.;Kim, H.J.;Kim, Y.H.;Kim, Y.B.
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2000년도 추계 학술발표회 논문집
    • /
    • pp.115-120
    • /
    • 2000
  • The analysis of flux distribution under stead-state in large power reactors with assymetry reactivity insertions requires the use of three-dimensional diffusion calculations. For the purpose, consistently formulated modern nodal methods based on higher order interface techniques have become popular tools for flux distributions in large commercial nuclear reactors. Among the earlier developments, the nodal Green's function method obtains its nodal interface equation from the transverse-integrated integral diffusion equation using a finite-medium Green's function. In this method, the outgoing current from a node surface is formulated as a response of the incoming currents and the spatially integrated neutron source within the same node. The well-known nodal expansion method is also based on an interface partial current formulation. Nodal methods high-level interface variables, i.e., interface net current and flux, may be more computationally efficient than the nodal Green's function method because they have one fewer unknown per interface. The Analytic Nodal Method(ANM), which can be classified as an interface net current technique and, was faster in solving some standard benchmark problems than the other two methods.(omitted)

  • PDF