• 제목/요약/키워드: Efficient Polishing Time

Search Result 13, Processing Time 0.018 seconds

Development of Acoustic Emission Monitoring System for Fine Machining - Application to Cutting State Monitoring in a Fine Fixed-abrasive Machining - (미세 음향방출 감시장치 개발 - 고정도 미세입자 가공상태 감시에의 적용 -)

  • Kim Hwa Young;Ahn Jung Hwan;Kim Sung Ryul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.109-117
    • /
    • 2005
  • In case of fine machining processes, the cutting state monitoring by a skilled operator is impossible because the physical changes generated during fine machining are very weak. To realize the high efficient and precise fine machining, it is necessary to develop the sensor based monitoring system which is able to detect the fine changes of cutting state. In this paper, the fine acoustic emission monitoring system is developed to monitor the state of the fine machining process. The developed system consists of the AE sensor and the AE signal processing unit. And this has the high-sensitivity and bandwidth which can detect fine AE signal generated during fine machining process. In order to investigate the feasibility of the developed system, evaluation experiments were performed in the fine fixed-abrasive machining processes such as polishing and glass ferrule slicing. Experimental results show that the developed monitoring system possesses an excellent real-time monitoring capability at fine machining processes.

Selection of the Efficient Superfinishing Condition on an Anodized Al7075 Surface in Experimental Design (실험계획법을 이용한 아노다이징 표면 처리된 Al7075 소재의 효율적인 수퍼피니싱 조건 선정에 관한 연구)

  • Lee, Soon-Jong;Choi, Su-Hyun;Cho, Young-Tae;Jung, Yoon-Gyo;Jung, Jong-Yun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.12
    • /
    • pp.993-998
    • /
    • 2016
  • In today's manufacturing industries, the demand for light non-ferrous materials is considerable due to the need to improve productivity and manufacturability. Since the surface roughness of a material is important for improving the functionality of machined parts, various techniques for surface treatments have been developed to obtain non-ferrous materials with low roughness. A superfinishing method utilizing polishing films is generally applied to the anodized surface of Al7075 in order to improve its roughness. The objective of this research is to determine through experiment the parameters that facilitate the shortest processing time, using a superfinishing method, for reaching a roughness of Ra $0.2{\mu}m$. This objective is met by applying the Taguchi method in the experiments. Through the experiments of superfinishing, the effectiveness of the parameters adopted for the surface treatment is demonstrated.

Effects of Operation Parameters on Pollutants Removal in a Lab-Scale Multi-Layered Soil Filtration System (하천 수질정화를 위한 실험실 규모 다단식 토양여과 시스템에서 오염물질 제거에 미치는 운전인자의 영향)

  • Won, Se-Yeon;Ki, Dong-Won;Yoon, Min-Hyeok;Maeng, Sung-Kyu;Ahn, Kyu-Hong;Park, Joon-Hong;Song, Kyung-Guen
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.2
    • /
    • pp.91-96
    • /
    • 2012
  • In this study we investigated the effects of operational parameters of a multi-layered soil filtration (filter depth, filtration velocity, and continuous/intermittent operation) on removal of pollutants in river water. As filter depth increased removal of all the pollutants (COD, TP, TN, and $NH_4$-N) was increased because the increase in filter depth increased in contact time between media and pollutants. The removal of TP and $NH_4$-N more increased with the increase in filter depth, comparing to the biological COD removal which was performed only in the top layer, since the removal mechanism of TP and $NH_4$-N was physicochemical process occurring throughout the whole layers. However, the reduction in filtration velocity resulted in decrease of removal all the pollutants removal due to shorter retention time. Biological COD removal was more influenced with the reduction in filtration velocity (longer retention time), than the removal of TP and $NH_4$-N. Because biological process was occurred only in the top layer which has relatively shorter retention time, comparing with physicochemical process occurred throughout whole media. Therefore, it is desirable that the operation parameters be controlled toward increasing retention time, in order to achieve efficient pollutants removal. The change in operation mode (continuos vs. intermittent operations) did not provide significant effects on the pollutant treatment efficiency by the multi-layered soil filtration system. Our findings suggest that for stable long-term operation it should be considered keeping conditions for biological activity and accelerating clogging.