• Title/Summary/Keyword: Efficient Conversion

Search Result 818, Processing Time 0.026 seconds

Data Conversion Schemes for Efficient Transmission on End-to End Asynchronous Secure Communication (단대단 비동기 암호통신에서 효율적인 전송을 위한 데이터 변환방법)

  • Jeong, Hyeon-Cheol
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.7
    • /
    • pp.1834-1844
    • /
    • 1996
  • In asynchronous communication data of specific area are used as all kinds of control characters. Therefore, data of this area must be converted to other character and transmitted followed by control prefix to prevent the misconception as control characters. This paper presents several methods for character conversion that prevent the lengthening of data and enhance the overall efficiency of communication by transmitting with a certain conversion and without control prefixes on control-like characters occurring when data are transmitted with ciphering onto asynchronous communication path. For such conversion, the scope of transmitted data was sup-posed and efforts were made not to exceed that scope. Experiments showed that method is better in communication speed than the existing ones and the ciphering has no problem by confirming the randomness of ciphered data.

  • PDF

Effect of Hydrocarbons on the Promotion of NO-$NO_2$ Conversion in NonThermal Plasma DeNOx Treatment (비열 플라즈마에 의한 NO의 산화에 탄화수소 첨가제가 미치는 영향)

  • Shin, Hyun-Ho;Yoon, Woong-Sup
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.33-46
    • /
    • 2000
  • In the present study, a systematic chemical kinetic calculations were made to investigate the augmentation of NO-$NO_2$ conversion due to the addition of various hydrocarbons (methane, ethylene, ethane, propene, propane) in the nonthermal plasma treatment. It is included in the present conclusion that the reaction between hydrocarbon and oxygen radicals induced by electron collision, is believed to be a primarily process for triggering the overall NO oxidation and the eventual NOx reduction. Upon the completion of the initiating step, various radicals (OH, $NO_2$ etc.) successively produced by hydrocarbon decomposition form the primary path of NO-$NO_2$ conversion. When the initiating step is not activated, hydrocarbon consumption rate appeared to be very low, thereby the targeted level of NO conversion can only be achieved by the addition of more input energy. Present study showed ethylene and propene to have higher affinity with 0 radical under all conditions, thereby both of these hydrocarbons show very fast and efficient NO-$NO_2$ oxidation. It was also shown that propene is superior to ethylene in the aspect of NOx removal.

  • PDF

Energy Conversion Efficiency Improvement of Piezoelectric Micropower Generator Adopting Low Leakage Diodes (저누설 다이오드를 사용한 저전력 압전발전기의 효율 개선에 관한 연구)

  • Kim, Hye-Joong;Kang, Sung-Muk;Kim, Ho-Seong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.938-943
    • /
    • 2007
  • In this paper, we show that, in case of piezoelectric micropower generator, just replacing Schottky diodes in the bridge rectifier with ultra-low reverse leakage current diodes improves the mechanical-to-electrical energy conversion efficiency by more than 100%. Experimental and PSPICE simulation results show that, due to the ultra-low leakage current, the charging speed of the circuit employing PAD1 is higher than that of the circuit employing Schottky diodes and the saturation voltage of the circuit employing PAD1 is also higher. This study suggests that , when the internal impedance of source is very large (a few tens of $M{\Omega}$) such that maximum charging current is a few microamperes or less, in order to realize literally the energy scavenging system, ultra-low reverse leakage current diodes should be used for efficient energy conversion. Since low-level vibration is ubiquitous in the environment ranging from human movement to large infrastructures and the mechanical-to-electrical energy conversion efficiency is much more critical for use of these vibrations, we believe that the improvement in the efficiency using ultra-low leakage diodes, as found in this work, will widen greatly the application of piezoelectric micropower generator.

Effect of Hydrocarbons on the Promotion of $NO-NO_{2}$ Conversion in NonThermal Plasma DeNOx Treatment (비열 플라즈마에 의한 NO의 산화에 탄화수소 첨가제가 미치는 영향)

  • Shin, Hyun-Ho;Yoon, Woong-Sup
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.178-188
    • /
    • 2000
  • In the present study, a systematic chemical kinetic calculations were made to investigate the augmentation of $NO-NO_{2}$ conversion due to the addition of various hydrocarbons (methane, ethylene, ethane, propene, propane) in the nonthermal plasma treatment. It is included in the present conclusion that the reaction between hydrocarbon and oxygen radicals induced by electron collision, is believed to be a primarily process for triggering the overall NO oxidation and the eventual NOx reduction. Upon the completion of the initiating step, various radicals (OH, $HO_{2}$ etc.) successively produced by hydrocarbon decomposition form the primary path of $NO-NO_{2}$ conversion. When the initiating step is not activated, hydrocarbon consumption rate appeared to be very low, thereby the targeted level of NO conversion can only be achieved by the addition of more input energy. Present study showed ethylene and propene to have higher affinity with 0 radical under all conditions, thereby both of these hydrocarbons show very fast and efficient $NO-NO_{2}$ oxidation. It was also shown that propene is superior to ethylene in the aspect of NOx removal.

  • PDF

A Rule-based Optimal Placement of Scaling Shifts in Floating-point to Fixed-point Conversion for a Fixed-point Processor

  • Park, Sang-Hyun;Cho, Doo-San;Kim, Tae-Song;Paek, Yun-Heung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.4
    • /
    • pp.234-239
    • /
    • 2006
  • In the past decade, several tools have been developed to automate the floating-point to fixed-point conversion for DSP systems. In the conversion process, a number of scaling shifts are introduced, and they inevitably alter the original code sequence. Recently, we have observed that a compiler can often be adversely affected by this alteration, and consequently fails to generate efficient machine code for its target processor. In this paper, we present an optimization technique that safely migrates scaling shifts to other places within the code so that the compiler can produce better-quality code. We consider our technique to be safe in that it does not introduce new overflows, yet preserving the original SQNR. The experiments on a commercial fixed-point DSP processor exhibit that our technique is effective enough to achieve tangible improvement on code size and speed for a set of benchmarks.

Electrocatalytic Activity of Sulfamic Acid Doped Polyaniline Nanofiber Counter Electrode for Dye Sensitized Solar Cell

  • Jo, Chul-Gi;Ameen, Sadia;Akhtar, M.Shaheer;Kim, Young-Soon;Yang, O-Bong;Shin, Hyung-Shik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.385-385
    • /
    • 2009
  • Uniform polyaniline nanofibers (PANI NFs), and chemically doped sulfamic acid(SFA) PANI NFs, synthesized via template free interfacial polymerization process, were used as new counter electrodes materials for the fabrication of the highly-efficient dyesensitized solar cells (DSSCs). The PANI NFs based fabricated DSSCs exhibited a solarto-electricity conversion efficiency of ~ 4.02% while, the SFA doped PANI NFs based DSSC demonstrated ~ 27% improvement in the solar-to-electricity conversion efficiency. The obtained solar-to-electricity conversion efficiency for SFA doped PANI NFs based DSSC was 5.47% under 100mW/$cm^2$(AM1.5). The enhancement in the conversion efficiency was due to the incorporation of SFA into the PANI NFs which resulted to the higher electrocatalytic activity for the $I^{3-}/I^-$ redox reaction.

  • PDF

Thermal Stress Analysis by Field Data Conversion between FDM and FEM (FDM과 FEM의 해석 데이터 변환에 의한 탄소성 열응력 해석)

  • Kwahk, S.Y.;Cho, C.D.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.4
    • /
    • pp.228-234
    • /
    • 2001
  • The present study was an attempt for systematic data conversion between FDM and FEM in order to evaluate the thermal stress distribution during quenching process. It has been generally recognized that FDM is efficient in flow and temperature analysis and FEM in that of stress. But it induced difficulty and tedious work in analysis that one uses both FDM and FEM to take their advantages because of the discrepancy of nodes between analysis tools. So we proposed field data conversion procedure from FDM to FEM in 3-dimensional space, then applied this procedure to analysis of quenching process. The simulation procedure calculates the distributions of temperature and microstructure using FDM and microstructure evolution equations of diffusion and diffusionless transformation. FEM was used for predicting the distributions of thermal stress. The present numerical code includes coupled temperaturephase transformation kinetics and temperature-microstructure dependent material properties. Calculated results were compared with previous experimental data to verify the method, which showed good agreements.

  • PDF

Energy-Efficient Ternary Modulator for Wireless Sensor Networks

  • Seunghan Baek;Seunghyun Son;Sunmean Kim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.147-151
    • /
    • 2024
  • The importance of Wireless Sensor Networks is becoming more evident owing to their practical applications in various areas. However, the energy problem remains a critical barrier to the progress of WSNs. By reducing the energy consumed by the sensor nodes that constitute WSNs, the performance and lifespan of WSNs will be enhanced. In this study, we introduce an energy-efficient ternary modulator that employs multi-threshold CMOS for logic conversion. We optimized the design with a low-power ternary gate structure based on a pass transistor using the MTCMOS process. Our design uses 71.69% fewer transistors compared to the previous design. To demonstrate the improvements in our design, we conducted the HSPICE simulation using a CMOS 180 nm process with a 1.8V supply voltage. The simulation results show that the proposed ternary modulator is more energy-efficient than the previous modulator. Power-delay product, a benchmark for energy efficiency, is reduced by 97.19%. Furthermore, corner simulations demonstrate that our modulator is stable against PVT variations.

A Study on the Investment Efficiency of CB(Convertible Bond) (CB(전환사채)의 투자효율성에 관한 실증연구)

  • Sun-Je Kim
    • Journal of Service Research and Studies
    • /
    • v.10 no.4
    • /
    • pp.71-88
    • /
    • 2020
  • CB(Convertible bond) is mezzanine security that have the characteristics of bonds and stocks. From the perspective of investors, the purpose of the research is to empirically investigate the degree of investment efficiency of CB and to suggest efficient investment plans. The research method investigated the maturity interest rate, conversion price, and conversion date for CB, and then linked it with daily stock price fluctuations after the conversion date to determine the degree of investment efficiency and stock conversion effect of CB. As a result of the study, it was analyzed that the ratio of the conversion price exceeded days was only about 1/4 of the conversion date, so the investment efficiency was low. The conversion day yield was -6.3% on average and the maturity day yield was -5.2% on average, showing a minus return on average, which was calculated differently from investor expectations. It was analyzed that the number of stocks with a minus conversion day is 2.4 times greater than the number of plus stocks and 3.7 times more than the number of plus stocks with a minus maturity return, so the expected return on stock conversion of CB is low. The research contribution was derived from the problem that the expected rate of return of CB is not high, and it is that the investor's point of view when purchasing CB was established.

Improved Photovoltaic Performance of Inverted Polymer Solar Cells using Multi-functional Quantum-dots Monolayer

  • Moon, Byung Joon;Lee, Kyu Seung;Kim, Sang Jin;Shin, Dong Heon;Oh, Yelin;Lee, Sanghyun;Kim, Tae-Wook;Park, Min;Son, Dong Ick;Bae, Sukang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.400.1-400.1
    • /
    • 2016
  • Interfacial engineering approaches as an efficient strategy for improving the power conversion efficiencies (PCEs) of inverted polymer solar cells (iPSCs) has attracted considerable attention. Recently, polymer surface modifiers, such as poly(ethyleneimine) (PEI) and polyethylenimine ethoxylated (PEIE), were introduced to produce low WF electrodes and were reported to have good electron selectivity for inverted polymer solar cells (iPSCs) without an n-type metal oxide layer. To obtain more efficient solar cells, quantum dots (QDs) are used as effective sensitizers across a broad spectral range from visible to near IR. Additionally, they have the ability to efficiently generate multiple excitons from a single photon via a process called carrier multiplication (CM) or multiple exciton generation (MEG). However, in general, it is very difficult to prepare a bilayer structure with an organic layer and a QD interlayer through a solution process, because most solvents can dissolve and destroy the organic layer and QD interlayer. To present a more effective strategy for surpassing the limitations of traditional methods, we studied and fabricated the highly efficient iPSCs with mono-layered QDs as an effective multi-functional layer, to enhance the quantum yield caused by various effects of QDs monolayer. The mono-layered QDs play the multi-functional role as surface modifier, sub-photosensitizer and electron transport layer. Using this effective approach, we achieve the highest conversion efficiency of ~10.3% resulting from improved interfacial properties and efficient charge transfer, which is verified by various analysis tools.

  • PDF