• Title/Summary/Keyword: Efficiency temperature coefficient

Search Result 275, Processing Time 0.033 seconds

A Study on the High Frequency Ultrasonic Attenuation Characterization in Artificially Aging Degraded 2.25Cr-1Mo Steel (2.25Cr-1Mo 강 인공 열화재의 고주파수 초음파 감쇠특성에 관한 연구)

  • Park, Ik-Keun;Park, Un-Su;Kim, Chung-Seok;Kim, Hyun-Mook;Kwun, Sook-In;Byeon, Jai-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.439-445
    • /
    • 2001
  • The destructive method is reliable and widely used lot the estimation of material degradation but, it have time-consuming and a great difficulty in preparing specimens from in-service industrial facilities. Therefore, the estimation of degraded structural materials used at high temperature by nondestructive evaluation such as electric resistance method, replica method, Barkhausen noise method, electro-chemical method and ultrasonic method are strongly desired. Ultrasonic nondestructive evaluation technique has been reported good to attain efficiency of measurement, high sensitivity of measurement, and rapidity and reliability of result interpretation. In this study, it was verified experimentally the feasibility of the evaluation of degraded 2.25Cr-1Mo steel specimens which were prepared by the isothermal aging heat treatment at $630^{\circ}C$ by high frequency longitudinal wave method investigating the change of attenuation coefficient by FFT analysis and wavelet transform. Because of carbide precipitation increase and spheroidization near grain boundary of microstructure to aging degradation, attenuation coefficient had a tendency to increase as degradation proceeded. It was identified possibly to evaluate degradation using the characteristics of high-frequency ultrasonics. Frequency dependence of ultrasonic attenuation coefficient to aging degradation appeared large, which made sure that attenuation coefficient is an important parameter for evaluation of aging degradation.

  • PDF

Analysis on the solute redistribution in coarsening dendrite arms during solidification of binary metal alloys (수지상가지의 조대화를 고려한 이원합금의 응고과정동안 용질 재분배 해석)

  • Yu, Ho-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1437-1448
    • /
    • 1996
  • This paper presents a simplified model for approximate analysis of the solute redistribution in coarsening dendrite arms during solidification of binary metal alloys. By introducing a quadratic concentration profile with a time-dependent coefficient, the integral equation for diffusion in the solid phase is reduced to a simple differential relation between the coefficient and the solid-liquid interface position. The solid fraction corresponding to the system temperature is readily determined from the relation, phase equilibrium and the overall solute balance in which the liquid phase is assumed to be completely mixed. In order to validate the developed model, calculations are performed for the directional solidification of Al-4.9 mass Cu alloy. The predicted eutectic fractions for a wide range of the cooling rate reasonably agree with data from the well-known experiment as well as sophisticated numerical analyses. Also, the results for the back diffusion limits are consistent with available references. Additional calculations show that the characteristic parameters such as the coarsening, density variation and nonlinarity in the phase diagram significantly affect the microsegregation. Owing to the simplicity, efficiency and compatibility, the present model may be suitable for the micro-macroscopic solidification model as a microscopic component.

Review of effects of friction coefficient of moving bearing on Stability of CWR (가동단 마찰계수가 장대레일 축력 안정성에 미치는 영향 검토)

  • Ryu Jae-Nam;Choi Young-Joon;Yang Sin-Chu
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.812-817
    • /
    • 2004
  • Recently drastic improvement of railway technology has been accompanied by the construction of very high-speed tracks. It should be noticed that Continuously Welded Rail(CWR) has played significant role in technical development of railway and that installation of CWR is now being scheduled on existing lines as well as newly-built lines. In general, interaction between CWR and bridge deck takes place on bridge section and additional axial force and displacement is to be developed owing to temperature and braking/acceleration forces. This interaction is known to be mainly governed by span organizations and arrangements of foot bearings. In common practice, movable bearing is stationed and designed on the assumption that it is not able to transfer the horizontal force of upper decks. However, it is well known that horizontal resistance is developed in movable bearings due to friction and that friction coefficient of movable bearing is ranged from 0.03 to 0.20 depending on the material of bearings and magnitude of reactions. Therefore, it is easily reasoned out that friction of movable bearing can influence the mutual behavior of CWR and bridge decks. Suggested in this study is to investigate the validity and efficiency of friction effect of movable bearings in controlling the axial force and displacement of CWR on continuous railway bridges.

  • PDF

Corrosion Resistance and Low Friction Property of Sintered Steel Parts via Chromizing Treatment (크로마이징 처리 된 철계 소결 부품의 내식성 및 저 마찰특성)

  • Kim, Sang-Gweon;Park, Yong-Jin;Yeo, Kuk-Hyun;Lee, Jae-Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.11
    • /
    • pp.809-815
    • /
    • 2012
  • Recently, as the interest in improving energy efficiency has grown, the demand for vehicle and machine parts that are resistant in high temperature corrosive conditions and abrasive environments has increased. Pack chromizing treatment of sintered steels is a profitable method that satisfies both corrosion resistance and low friction properties. Since austenitic stainless steels have good corrosion resistance but low mechanical hardness, if they are replaced by sintered steel parts with pack chromizing treatment, all the desirable properties such as low price, easy molding, high hardness, low frictional coefficient, and high corrosion resistance, can be obtained. The higher corrosion resistance of the chromized parts over that of the austenitic stainless steels was acquired by coating chromium carbides and a thin chromium oxides layer on the surface. Moreover, the surface morphology of chromized parts, which were composed of chromium rich phases and hardened chromium carbides by diffusing and alloying, had a peak-and-valley shape so that the dimple effect by the wrinkled morphology and high hardness induced a low friction coefficient.

Calibration of the Hargreaves Equation for the Reference Evapotranspiration Estimation on a Nation-Wide Scale (우리나라 기준 증발산량 산정을 위한 Hargreaves 계수 산정)

  • Lee, Khil-Ha;Park, Jae-Hyeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.675-681
    • /
    • 2008
  • In this study, the daily-based reference evapotranspiration was evaluated with Hargreaves equation at the 23 meteorological stations for the time period of 1997-2006. The Hargreaves coefficient was self-calibrated to give the best fit with Penman-Monteith evapotranspiration, being regarded as a reference. On the basis of the estimated parameter set, a generalized regression was conducted to estimate the Hargreaves evapotranspiration by just using temperature data. This study will contribute to water resources planning, irrigation schedule, and environmental management.

Control of Dimethyl Sulfide Emissions Using Biofiltration

  • Kong, Sei-Hun;Kim, Jo-Chun;Allen, Eric R.;Park, Jong-Kil
    • Journal of Environmental Science International
    • /
    • v.11 no.8
    • /
    • pp.819-827
    • /
    • 2002
  • Laboratory scale experiments were conducted to evaluate the performance of a biofilter for eliminating dimethyl sulfide(DMS). A commercial compost/pine bark nugget mixture served as the biofilter material for the experiments. The gas flow rate and DMS concentration entering the filter were varied to study their effect on the biofilter efficiency. The operating parameters, such as the residence time, inlet concentration, pH, water content, and temperature, were all monitored throughout the filter operation. The kinetic dependence of the DMS removal along the column length was also studied to obtain a quantitative description of the DMS elimination. High DMS removal efficiencies(>95%) were obtained using the compost filter material seeded with activated sludge. DMS pollutant loading rates of up to 5.2 and 5.5 g-DMS/m$^3$/hr were effectively handled by the upflow and downflow biofilter columns, respectively. The macrokinetics of the DMS removal were found to be fractional-order diffusion-limited over the 9 to 25 ppm range of inlet concentrations tested. The upflow column had an average macrokinetic coefficient(K$\_$f/) of 0.0789 $\pm$ 0.0178 ppm$\^$$\sfrac{1}{2}$//sec, while the downflow column had an average coefficient of 0.0935 $\pm$ 0.0200 ppm$\^$$\sfrac{1}{2}$//sec. Shorter residence times resulted in a lower mass transfer of the pollutant from the gas phase to the aqueous liquid phase, thereby decreasing the efficiency.

A Numerical Study Of Flow Control Valve to Flow Characteristics by Pressure Difference for Hydrogen Station (수소충전소용 유량제어 밸브의 차압에 따른 유동특성에 대한 수치해석적 연구)

  • Nam, Chung-Woo;Kim, Rak-Min;Kim, Hyun-Hyo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.2
    • /
    • pp.28-33
    • /
    • 2021
  • With the recent growing interest in eco-friendly cars, as interest in eco-friendly cars increases, interest and purchase of hydrogen fuel cell vehicles that do not emit pollutants are increasing. Recently, the government is supporting the expansion of hydrogen charging station and localization of core parts according to the government's hydrogen energy dissemination policy. In this study, the flow characteristics of the hydrogen flow control valve were investigated. As the differential pressure increases, the mass flow rate and flow coefficient tend to be different from the volume flow rate. And it was confirmed that it affects the hydrogen temperature due to the nozzle effect in the bottleneck section, and the change in density affects the mass flow rate.

Development of cascade refrigeration system using R744 and R404A - Prediction and comparison on maximum COP(Coefficient of Performance) - (R744-R404A용 캐스케이드 냉동시스템 개발에 관한 연구(2) - 최대 성능계수에 관한 예측과 비교 -)

  • Oh, Hoo-Kyu;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.189-195
    • /
    • 2011
  • In this paper, prediction and comparison on COP(coefficient of performance) of R744-R404A cascade refrigeration system are presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include subcooling and superheating degree, compressor efficiency, and condensing and evaporating temperature in the R404A high- and R744 low-temperature cycle, respectively. The main results were summarized as follows : The prediction for performance of R744-R404A cascade refrigeration system have been proposed through multiple regression analysis and compared with other researcher's correlations. As a result, prediction proposed in the study shows disagreement with existing equations. Therefore, it is necessary to propose the more accurate correlation predicting the COP of R744-R404A cascade refrigeration system through an addition experiments.

Development of a PTC Heater for Supplementary Heating in a Diesel Vehicle (디젤 차량의 보조 난방을 위한 PTC 히터 개발)

  • Shin, Yoon Hyuk;Kim, Sung Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.666-671
    • /
    • 2014
  • Using positive temperature coefficient (PTC) heater as supplementary heating for diesel engine vehicles with low heat source is a good method to enhance the heating performance during cold start. In this study, the PTC elements were made by using screen printing process for forming ohmic contact layer, and prototype of PTC heater was designed and made for a diesel engine vehicle. In process of designing the PTC heater, the thermal flow analysis of PTC element modules was conducted for verifying the effect of the shapes of contact surface between each of the components (cooling fin, insulator, ceramic element). We also investigated the performance characteristic (heating capacity, energy efficiency, pressure drop) of the PTC heater through the experiments. Therefore, the experimental results indicated that prototype of PTC heater had satisfactory performance. This study will be basis for improving the manufacturing process and increasing the performance of the PTC element and heater.

Thermoelectric properties and microstructures of Mg2Si0.6Sn0.4-based thermoelectric materials (Mg2Si0.6Sn0.4 열전재료의 열전특성과 미세조직)

  • Jang, Jeong-In;Ryu, Byeong-Gi;Lee, Ji-Eun;Park, Su-Dong;Lee, Ho-Seong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.53-53
    • /
    • 2018
  • Thermoelectric materials can convert directly waste heat to electricity and vice versa. The improvement of the thermoelectric efficiency strongly depends on the dimensionless figure of merit, $ZT=S^2{\sigma}T/{\kappa}$, where S is the Seebeck coefficient, ${\sigma}$ is the electrical conductivity, T is the absolute temperature, and ${\kappa}$ is the thermal conductivity. The thermal conductivity consists of the electronic contribution (${\kappa}_e$) and phonon contribution (${\kappa}_{ph}$). It is very challenge to increase the power factor, $S^2{\sigma}$ and to reduce the thermal conductivity simultaneously because the power factor and electronic thermal conductivity are coupled. One strategy is to decrease the phonon thermal conductivity. The phonon thermal conductivity can be decreased by controlling the grain size and structural defects such as dislocations and twinning. In order to achieve enhancements in thermoelectric efficiency, microstructures that can form numerous interfaces have been investigated intensively for controlling the transport of charge carriers and heat carrying phonons. In this presentation, we report the heterogeneous microstructure of $Mg_2Si_{0.6}Sn_{0.4}$ thermoelectric materials and investigation of its influence on thermoelectric properties.

  • PDF