• Title/Summary/Keyword: Efficiency of total energy utilization

Search Result 87, Processing Time 0.029 seconds

A Study on the Effective Utilization Plan through Field Investigation and Analysis with Power Transformers in Domestic Areas

  • Shin, Heung-Sik;Lee, Jae-Cheon;Bai, Seok-Myung;Kim, Seon-Gu;Kim, Jin-Tae;Kim, Gi-Hyeon;Jeong, Jong-Wook;Bang, Seon-Bae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.4
    • /
    • pp.88-95
    • /
    • 2007
  • Korea is highly dependent on foreign countries for energy while at the same time having a high energy-consumption industrial structure. Therefore, logical improvements in energy use efficiency and nationwide energy saving are becoming more and more important in coping with the worldwidehigh oil prices and environmental issues such as listed in the Kyoto Protocol to the United Nations Framework Convention on Climate Change. Consequently, a study was conducted on the average annual load factor in domestic areas to set a reasonable and reliable technology standard plan for high-efficiency transformers. The average annual load factor in Korea was discovered to be 18.4[%] classified by industry. This factor is expected to be used in arranging a domestic standard for a minimum efficiency system for transformers, and in reviewing and supplementing the standard transformers plan for the High Energy-Efficiency Appliance Certification. The expected effect from the establishment of the technology standards plan for highly efficient transformers is the expansion of the manufacturing and distribution of highly efficient transformers that are suitable for domestic use. These will lead to electricity cost savings for users, strengthening the related industries' market competitive powers and the effective reduction of greenhouse gases on a national level by drastically reducing loss from transformers, which accounts for a large portion of the total electric supply losses.

INTERACTIVE INFLUENCE OF DIETARY PROTEIN AND LIPID IN LACTATION

  • Park, C.S.;Choi, Y.J.;Fisher, G.R.;Erickson, G.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.1 no.1
    • /
    • pp.7-12
    • /
    • 1988
  • Twenty cows, by order of calving, were used in a completely randomized $2{\times}2$ factorial experiment. Variables were tow protein levels (14 and 18% crude protein) and concentration of fat (2 and 6% ether extract) in diets. Fat addition, via unprocessed whole sunflower seed, insured forage utilization in diets to meet energy requirement of cows. A total of 36 wks of lactation was subdivided into three 12-wk stages of lactation. Net energy lactation was set at 1.72, 1.57 and 1.42 Mcal/kg for each stage. Higher protein diets improved the efficiency of energy (FCM/net energy intake) which was particularly noted for diets containing high fat (85.7%). However, diets with low protein-high fat resulted in the lowest efficiency (67.7%). No difference in milk yield and butterfat was due to different levels and combinations of protein and lipid in diets. High protein diets depressed blood cholesterol and glucose compared to low-protein counterparts. Relative decline in milk production was slower for lower fat diets than for higher fat groups, especially mid to later stage of lactation. Results of this experiment tend to support our thesis on the synergistic effect of dietary protein and energy (lipid) upon efficiency of lactation.

An Evaluation on the Effect of the MSW-RDF Power Generation on the Thermal Efficiency and $CO_2$ Reduction (RDF발전에 의한 열효율향상 및 $CO_2$삭감효과에 대한 평가)

  • Choe, Gap-Seok;Choe, Yeon-Seok;Kim, Seok-Jun;Gwon, Yeong-Bae
    • 연구논문집
    • /
    • s.31
    • /
    • pp.45-51
    • /
    • 2001
  • One of emerging technologies under development in the advanced countries is considered as RDF(Refuse Derived Fuel) power generation, which could meet both the requirement of an alternative energy resource utilization and $CO_2$ reduction. This paper deals with the effect to the thermal effiency and CO2 reduction of RDF firing power generation. The statistical data of domestic MSW generation in last year in small and medium cities for evaluating the merits of the RDF power generation were used. The analysis for RDF power generation compared to the existing incinerator w/o(or w/) power generation shows around 20.6%(10.0%) up in the total thermal efficiency and 57.0%(31.4%) up in the $CO_2$ reduction respectively.

  • PDF

EFFECTS OF DIETARY TRYPTOPHAN LEVEL AND FOOD INTAKE ON ENERGY UTILIZATION BY MALE GROWING CHICKS

  • Sugahara, K.;Kubo, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.4
    • /
    • pp.647-651
    • /
    • 1992
  • Two experiments involving comparative slaughter procedures were conducted to see if the decrease in total energy retention (ER) resulted from the decreased food intake in growing chicks fed on a diet containing tryptophan less than the requirement. Ad libitum-feeding a diet containing 50% of tryptophan of a control diet (1.5 g/kg) decreased body weight gain, apparent metabolizable energy intake (AMEI), ER and ER : AMEI ratio. When both the control diet and the 0.75 g/kg tryptophan diet were tube-fed at the two levels of food intake, body weight gain was significantly lower in chicks on the low tryptophan diet than in the control chicks at each level of intake. AME : gross-energy ratio decreased only when the low tryptophan diet was tube-fed at the higher level of intake. Energy retained as protein was significantly decreased by the low tryptophan level and reduction of food intake. Energy retained as fat was affected by food intake. ER and ER : AMEI ratio were unaffected by dietary tryptophan level and were proportional to AMEI. Heat increment of feeding was affected by neither tryptophan nor food intake. These results indicate that the decreased ER in chicks fed on the low tryptophan diet was due mainly to the decreased food intake and not to the decreased efficiency of ME utilization.

The influence of shade allocation or total shade plus overhead fan on growth performance, efficiency of dietary energy utilization, and carcass characteristics of feedlot cattle under tropical ambient conditions

  • Castro-Perez, Beatriz I.;Estrada-Angulo, Alfredo;Rios-Rincon, Francisco G.;Nunez-Benitez, Victor H.;Rivera-Mendez, Carlos R.;Urias-Estrada, Jesus D.;Zinn, Richard A.;Barreras, Alberto;Plascencia, Alejandro
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.6
    • /
    • pp.1034-1041
    • /
    • 2020
  • Objective: The objective of this experiment was to evaluate the effect of shade allocation and shade plus fan on growth performance, dietary energy utilization and carcass characteristics of feedlot cattle under tropical ambient conditions Methods: Two trials were conducted, involving a total of 1,560 young bulls (289±22 kg BW) assigned to 24 pens (65 bulls/pen and 6 pens/treatment). Pens were 585 ㎡ with 15 m fence line feed bunks. Shade treatments (㎡ shade/animal) were: i) limited shade (LS) to 1.2 ㎡ shade/animal (LS1.2); ii) limited shade to 2.4 ㎡ shade/animal (LS2.4); iii) total shade (TS) which correspond to 9 ㎡/animal, and iv) total shade equipped with fans (TS+F). Trials lasted 158 and 183 days. In both studies, the average weekly maximum temperature exceeded 34℃. Results: Increasing shade allocation tended (p = 0.08) to linearly increases average daily gain (ADG), and dry matter intake (DMI, quadratic effect, p = 0.03). This effect was most apparent between LS1.2 and LS2.4. Shade allocation, per se, did not affect gain efficiency or estimated dietary net energy (NE). Compared with TS, TS+F increased (p<0.05) ADG, gain efficiency, and tended (p = 0.06) to increase dietary NE. There was a quadratic effect of shade on longissimus area and marbling score, with values being lower (p<0.01) for LS2.4 than for LS1.2 or TS. Likewise, marbling score was lower for TS+F than for TS. Percentage kidney, pelvic, and heart (KPH) linearly decreased with increasing shade. In contrast, KPH was greater for TS than for TS+F. Conclusion: Providing more than 2.4 ㎡ shade/animal will not further enhance feedlot performance. The use of fans in combination with shade increases ADG and gain efficiency beyond that of shade, alone. These enhancements were not associated with increased DMI, but rather, to an amelioration of ambient temperature humidity index on maintenance energy requirement.

Development of Hybrid Induction Heating System for Laser Printer

  • Chae Young-Min;Kwon Joong-Gi;Han Sang-Yong;Sung Hwan-Ho
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.178-185
    • /
    • 2006
  • Recently, the demand for the development of high quality and high-speed laser printers and efficient power utilization has required. Among complicated electro-mechanic devices in laser printers, the toner-fusing unit consumes above 90[%] of all electrical energy needed for printing devices. Therefore, the development of a more effective energy-saving toner fusing process becomes a significant task in great demand. Generally, there are several ways to implement a fusing unit. Among them this paper presents a new induction heating method. The proposed induction heating method enables the increase of coupling coefficient between heating coil and heat roller which also increases total energy transfer efficiency. Therefore, the proposed IH (Induction Heating) inverter system provides very fast W.U.T. (Warm UP Time) as well as higher efficiency. Through experimental results, the proposed control system is verified.

An Active Battery Charge Management Scheme with Predicting Power Generation in ESS (에너지저장시스템에서 발전량 예측을 통한 능동적 배터리 충전 관리 방안)

  • Kim, Jung-Jun;Chae, Beom-Seok;Lee, Young-Kwan;Cho, Ki-Hwan
    • Smart Media Journal
    • /
    • v.9 no.1
    • /
    • pp.84-91
    • /
    • 2020
  • Along with increasing the renewable energy utilization, many researches have paid attention on the utilization and efficiency of energy storage systems. Especially, it is required an operational model in order to actively respond with each system's failure of sub-systems in the solar energy storage system. This paper proposes an energy management scheme by estimating the newly generated power based on the solar power generation samples. With comparing the estimated battery charging power in real time and the total charging power of the battery rack, a charge model is applied to adjust the charging power, As a result, the stability of energy storage system would be improved by suppressing the battery heat while maintaining battery C-Rate.

Drying of Crops with Solar Heated Air -Drying of Rough Rice - (태양열을 이용한 농산물건조에 관한 연구 (I)-벼의 건조에 대하여)

  • 이문남;금동혁;류능환
    • Journal of Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.100-113
    • /
    • 1978
  • Drying grain with conventional artificial drying methods requires great quantities of petroleum fuels. Depletion of fossil fuel increases the need of the utilization of solar energy as an alternative to petroluem fuels for drying grain , an energy intensive agricultural operation. Many techniques for the utilization of solar energy in grain drying have been developed, however, there are many problems in adopting solar energy as an energy sources for drying grain. Futhermore, very little research has been done on solar grain drying in Korea. This study was conducted to evaluate the availability of solar energy for drying of rough rice in Chuncheon, Suweon, and Jinju areas based on 50year meteorological data, and to analyze experimentally the performance of a solar air collector for dying grain, and to find the effects of solar heated air compared to unheated air on the rate of drying and energy consumption required for drying of rough rice. The results of this study was may be summarized as follows ; 1. Monthly average daily total radiation on a horizontal surface in October was 260.6 ly/day for Chuncheon, 240.3 ly/day for Suweon , and 253.4 ly/day for Jinju area, respectively. 2. the ratio of monthly average daily diffuse radiation to daily total radiation on a horizontal surface was approximately 0.41 for Chuncheon, 0.45 for Suweon, and 0.44 for Jinju area, respectively. 3. Although the statistical distribution curves of daily total radiation for the three locations were not identical , the differences among them were not large and may be neglected for many practical purposes. 4. I was estimated that the optimum tilting angle of the collector in October was approximately 46 degrees for Chuncheon and Suweon and 45 degrees for Jinju. 5. The ratio of the total radiation on a optimum tilting plane to that on a horizontal plane was estimated to be 1.36 for Chuncheon, 1.31 for Suweon, and 1.27 for Jinju , respectively. 6. The collection efficiency of the solar air collector ranged from 47. 8 to 51. 5 percent at the air flow rates of 251. 1-372.96 $m^3$/hr. High efficiency remained nearly , constant during the best sunshine hours, 10 a.m. to 2 p.m. and decreased during other hours. More energy was collected as the air flow rate incresed. 7. The average temperature rise in the drying air from the solar collector for the test period varied from $6.5^\circC$ to $21.8^\circC$ above the ambient air temperature. 8. Solar-dried rough rice averaged 13.7 percent moisture (w.b.) after 130 hours of drying with the air flow rate of 1. 64 ccm/$m^3$, and rough rice dried with natural air averaged 15.1 percent moisture (w.b.) after 325 hours of drying with the same air flow rate. 9. Energy saving of 2.4 kwh per $m^3$ percentage point of moisture removed was obtained from solar heated air drYing. The solar bin used 53.3 percent less energy per percentage point of moisture removed than the natural air bin.

  • PDF

Research on the Solar Concentrating Optical System for Solar Energy Utilization

  • Duan, Yimeng;Yang, Huajun;Jiang, Ping;Wang, Ping
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.371-375
    • /
    • 2013
  • To improve the utilization efficiency of solar energy, a new solar optical concentrating system composed of a parabolic reflector with a square cross-section, a hyperbolic reflector with a square cross-section and two converging convex lenses has been designed. The proposed method can simultaneously focus and shape sun light into a square pattern on the solar panel. In addition, the total reflection property of photonic crystal within the range of the visible sunlight spectrum has been analyzed. Finally, the relationship between solar concentrating multiples and the diameter of the primary mirror has been discussed.

Cross Layer Optimal Design with Guaranteed Reliability under Rayleigh block fading channels

  • Chen, Xue;Hu, Yanling;Liu, Anfeng;Chen, Zhigang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3071-3095
    • /
    • 2013
  • Configuring optimization of wireless sensor networks, which can improve the network performance such as utilization efficiency and network lifetime with minimal energy, has received considerable attention in recent years. In this paper, a cross layer optimal approach is proposed for multi-source linear network and grid network under Rayleigh block-fading channels, which not only achieves an optimal utility but also guarantees the end-to-end reliability. Specifically, in this paper, we first strictly present the optimization method for optimal nodal number $N^*$, nodal placement $d^*$ and nodal transmission structure $p^*$ under constraints of minimum total energy consumption and minimum unit data transmitting energy consumption. Then, based on the facts that nodal energy consumption is higher for those nodes near the sink and those nodes far from the sink may have remaining energy, a cross layer optimal design is proposed to achieve balanced network energy consumption. The design adopts lower reliability requirement and shorter transmission distance for nodes near the sink, and adopts higher reliability requirement and farther transmission distance for nodes far from the sink, the solvability conditions is given as well. In the end, both the theoretical analysis and experimental results for performance evaluation show that the optimal design indeed can improve the network lifetime by 20-50%, network utility by 20% and guarantee desire level of reliability.