• 제목/요약/키워드: Effective stress mode

검색결과 93건 처리시간 0.029초

구름마찰접촉하중 시 Polyethylene tibia 요소의 표면균열 복합전파 거동에 관한 연구 (Study for Possible Crack Propagation Mechanisms for a Surface Cracked in a Polyethylene Tibia Component Subject to Rolling and Sliding Contact)

  • 김병수;문병영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1222-1227
    • /
    • 2003
  • Pitting wear is a dominant form of polyethylene surface damage in total knee replacements, and may originate from surface cracks that propagate under repeated tribological contact. In this study, stress intensity factors, $K_{I}$ and $K_{II}$, were calculated for a surface crack in a polyethylene - CoCr - bone system under the rolling and/or sliding contact pressures. Crack length and load location were considered in determination of probable crack propagation mechanisms and fracture modes. Positive $K_{I}$ values were obtained for shorter cracks in rolling contact and for all crack lengths when the sliding load was apart from the crack. $K_{II}$, was the greatest when the load was directly adjacent to the crack $(g/a={\pm}1)$. Sliding friction caused a substantial increase of both $K_{I}^{max}$ and $K_{II}^{max}$. The effective Mode I stress intensity factors, $K_{eff}$, were the greatest at $g/a={\pm}1$, showing the significance of high shear stresses generated by loads adjacent to surface cracks. Such behavior of $K_{eff}$ suggests mechanisms for surface pitting by which surface cracks may propagate along their original plane under repeated rolling or sliding contact.

  • PDF

강 압축부재의 단면 항복에 따른 접선탄성계수 고찰 (A Review on the Tangent Modulus of Elasticity Associated With Partially Yielded Section of Steel Member Under Axially Compressed)

  • 시상광
    • 한국공간구조학회논문집
    • /
    • 제18권1호
    • /
    • pp.127-134
    • /
    • 2018
  • This study suggests the tangent modulus $E_t$ associated with partially yielded section of steel member under axially compressed. The provisions for column strength does not provide a information about failure mode of structural system. So, designers can not evaluate that a failure comes from member buckling or material yielding. The material of the axially compressed column under inelastic behavior reaches yielding point before the axial force renders the column bent. If axial members yields not by buckling effect but gradually yielding effect of material, the design code should accept related tangent modulus Et which is based on gradual yielding effect of material. This study provides the new effective tangent modulus $E_t$ derived in the case that residual stress is 30 percent and 50 percent of yielding stress respectively. The study considers idealized I section of steel which ignores web and general I section of steel with web respectively and makes conclude that tangent modulus $E_t$ with idealized I section of steel is rational.

A computational analysis of the scarf angle on a composites repair

  • Kim, Yun-Hae;Jo, Young-Dae;Murakami, Ri-Ichi
    • International Journal of Ocean System Engineering
    • /
    • 제1권1호
    • /
    • pp.9-15
    • /
    • 2011
  • This study examined the relationship between the scarf angle and stress distribution, and estimated the strength recovery via a finite element analysis. The following conclusions were drawn from this study. Resin will fracture due to a tensile load with a high scarf angle, which is similar to the patch repair method. An applied stress can be loaded to a repaired laminate if the scarf angle is $5^{\circ}$. The Von-Mises stress increases with decreasing scarf angle, with the exception of a scarf angle of $30^{\circ}$, where the scarf angle can indicate the rates of shear and normal stresses. Strength recovery can be better if the scarf angle is decreased to a lower angle. However, scarf machining requires more time, a high skill level and considerable expense. Therefore, a scarf angle of $5^{\circ}$ is the most effective for a repair. These results may provide a guide for engineers wishing to formulate a standard for repair. The scarf angle needs to be carefully managed for a more efficient composite repair.

투과형 광탄성 실험법에 의한 지능성 FRP의 파괴지연 효과에 관한 연구 (A Study on the Effect of Fracture Delay of Intelligent FRP by Transparent Photoelastic Experimental Method)

  • 이효재;황재석
    • 대한기계학회논문집A
    • /
    • 제23권11호
    • /
    • pp.1904-1911
    • /
    • 1999
  • The most effective material in the shape memory alloy(SMA) is the TiNi alloy, because its shape recovery characteristics are very excellent. We molded the composite material with shape memory function. The fiber of it is $Ti_{50}-Ni_{50}$ shape memory alloy and matrix of it is epoxy resin(Araldite B41, Hardner HT903. Ciba Geigy), its adhesive and optical sensitivity are very excellent. It was assured that the composite material could be used as model material of photoelastic experiment for intelligent materials or structures. In this research, the composite material with shape memory function is used as model material of photoelastic experiment. Photoelastic experimental hybrid method is developed in this research, it is assured that it is useful on the obtaining stress intensity factor and the separation of stress components from only isochromatic data. The measuring method of stress intensity factor of intelligent material by photoelastic experiment is introduced. In the mode I state, we can know that stress intensity factors are decreased more than 50% of stress intensity factor of room temperature when temperature of fiber is greater than 4$0^{\circ}C$, prestrain greater than 5% and fiber volume ratio greater than 0.42% and that stress intensity factors are decreased by 100% when fiber volume ratio is greater than 0.84%, prestrain greater than 5% and temperature greater than 60 $^{\circ}C$.

An exploratory study of stress wave communication in concrete structures

  • Ji, Qing;Ho, Michael;Zheng, Rong;Ding, Zhi;Song, Gangbing
    • Smart Structures and Systems
    • /
    • 제15권1호
    • /
    • pp.135-150
    • /
    • 2015
  • Large concrete structures are prone to cracks and damages over time from human usage, weathers, and other environmental attacks such as flood, earthquakes, and hurricanes. The health of the concrete structures should be monitored regularly to ensure safety. A reliable method of real time communications can facilitate more frequent structural health monitoring (SHM) updates from hard to reach positions, enabling crack detections of embedded concrete structures as they occur to avoid catastrophic failures. By implementing an unconventional mode of communication that utilizes guided stress waves traveling along the concrete structure itself, we may be able to free structural health monitoring from costly (re-)installation of communication wires. In stress-wave communications, piezoelectric transducers can act as actuators and sensors to send and receive modulated signals carrying concrete status information. The new generation of lead zirconate titanate (PZT) based smart aggregates cause multipath propagation in the homogeneous concrete channel, which presents both an opportunity and a challenge for multiple sensors communication. We propose a time reversal based pulse position modulation (TR-PPM) communication for stress wave communication within the concrete structure to combat multipath channel dispersion. Experimental results demonstrate successful transmission and recovery of TR-PPM using stress waves. Compared with PPM, we can achieve higher data rate and longer link distance via TR-PPM. Furthermore, TR-PPM remains effective under low signal-to-noise (SNR) ratio. This work also lays the foundation for implementing multiple-input multiple-output (MIMO) stress wave communication networks in concrete channels.

다공성 압전 스펀지를 이용한 플렉서블 에너지 하베스팅 소자 개발 (Flexible Energy Harvesting Device Based on Porous Piezoelectric Sponge)

  • 허동훈;현동열;박성철;박귀일
    • 한국재료학회지
    • /
    • 제32권11호
    • /
    • pp.508-514
    • /
    • 2022
  • Piezoelectric composite films which are enabled by inorganic piezoelectric nanomaterials-embedded polymer, have attracted enormous attention as a sustainable power source for low powered electronics, because of their ease of fabrication and flexible nature. However, the absorption of applied stress by the soft polymeric matrices is a major issue that must be solved to expand the fields of piezoelectric composite applications. Herein, a flexible and porous piezoelectric composite (piezoelectric sponge) comprised of BaTiO3 nanoparticles and polydimethylsiloxane was developed using template method to enhance the energy conversion efficiency by minimizing the stress that vanishes into the polymer matrix. In the porous structure, effective stress transfer can occur between the piezoelectric active materials in compression mode due to direct contact between the ceramic particles embedded in the pore-polymer interface. The piezoelectric sponge with 30 wt% of BaTiO3 particles generated an open-circuit voltage of ~12 V and a short-circuit current of ~150 nA. A finite element method-based simulation was conducted to theoretically back up that the piezoelectric output performance was effectively improved by introducing the sponge structure. Furthermore, to demonstrate the feasibility of pressure detecting applications using the BaTiO3 particles-embedded piezoelectric sponge, the composite was arranged in a 3 × 3 array and integrated into a single pressure sensor. The fabricated sensor array successfully detected the shape of the applied pressure. This work can provide a cost-effective, biocompatible, and structural strategy for realizing piezoelectric composite-based energy harvesters and self-powered sensors with improved energy conversion efficiency.

Study on mechanism of macro failure and micro fracture of local nearly horizontal stratum in super-large section and deep buried tunnel

  • Li, Shu-cai;Wang, Jian-hua;Chen, Wei-zhong;Li, Li-ping;Zhang, Qian-qing;He, Peng
    • Geomechanics and Engineering
    • /
    • 제11권2호
    • /
    • pp.253-267
    • /
    • 2016
  • The stability of surrounding rock will be poor when the tunnel is excavated through nearly horizontal stratum. In this paper, the instability mechanism of local nearly horizontal stratum in super-large section and deep buried tunnel is revealed by the analysis of the macro failure and micro fracture. A structural model is proposed to explain the mechanics of surrounding rock collapse under the action of stress redistribution and shed light on the macroscopic analytical approach of the stability of surrounding rock. Then, some highly effective formulas applied in the tunnel engineering are developed according to the theory of mixed-mode micro fracture. And well-documented field case is made to demonstrate the effectiveness and accuracy of the proposed analytical methods of mixed-mode fracture. Meanwhile, in order to make the more accurate judgment about yield failure of rock mass, a series of comprehensive failure criteria are formed. In addition, the relationship between the nonlinear failure criterion and $K_I$ and $K_{II}$ of micro fracture is established to make the surrounding rock failure criterion more comprehensive and accurate. Further, the influence of the parameters related to the tension-shear mixed-mode fracture and compression-shear mixed-mode fracture on the propagation of rock crack is analyzed. Results show that ${\sigma}_3$ changes linearly with the change of ${\sigma}_1$. And the change rate is related to ${\beta}$, angle between the cracks and ${\sigma}_1$. The proposed simple analytical approach is economical and efficient, and suitable for the analysis of local nearly horizontal stratum in super-large section and deep buried tunnel.

테프론 모울딩법 에 의한 S .I .F.의 광탄성 실험해석 - 이차원 S .I .F. 문제에 대한 실험방법 의 정도평가 - (Photoelastic Determination of Stress Intensity Factors by Teflon Molding Method - Evaluation of The Method In Terms of Two Dimensional Mode I and Mode II -)

  • 최선호;황재석;채영석
    • 대한기계학회논문집
    • /
    • 제7권1호
    • /
    • pp.1-10
    • /
    • 1983
  • The photoelastic determination of S.I.F. in Fracture mechanics has been regarded as one of the most effective and practical experimental methods in which stresses are read directly, except a few shortcomings involved in the process of experiment; the difficulties of making a sharp crack tip similar to the practical one and nearly impossibilities of carving an arbitrarily shaped crack on the test plate, etc. To eliminate flaws mentioned above, recently, Kitagawa and Watanabe of Tokyo Univ.developed a new method named"Teflon Insert Method". which has improved experimental accuracy to a considerable extent byt remaining still room for further improvement, that is, the elimination of bonding boundary scars which render photoelastic fringes obscure. In this paper, a newly exploited"Teflon Molding Method" was attempted for the completion of teflon-epoxy experimental method. The experimental results obtained by this method are compared with existent theoretical and experimental values to evaluate its accuracy. As result, 1-6% of margin of errors were appeared in a series of photoelastic experiments which defied any other conventional method in terms of experimental accuracy.perimental accuracy.

ON THE TREATMENT OF DUCTILE FRACTURE BY THE LOCAL APPROACH CONCEPT IN CONTINUUM DAMAGE MECHANICS : THEORY AND EXAMPLE

  • Kim, Seoung-Jo;Kim, Jin-Hee;Kim, Wie-Dae
    • Journal of Theoretical and Applied Mechanics
    • /
    • 제2권1호
    • /
    • pp.31-50
    • /
    • 1996
  • In this paper, a finite element analysis based on the local approach concept to fracture in the continuum damage mechanics is performed to analyze ductile fracture in two dimensional quasi-static state. First an isotropic damage model based on the generalized concept of effective stress is proposed for structural materials in the context of large deformation. In this model, the stiffness degradation is taken as a measure of damage and so, the fracture phenomenon can be explained as the critical deterioration of stiffness at a material point. The modified Riks' continuation technique is used to solve incremental iterative equations. Crack propagation is achieved by removing critically damaged elements. The mesh size sensitivity analysis and the simulation of the well known shearing mode failure in plane strain state are carried out to verify the present formulation. As numerical examples, an edge cracked plate and the specimen with a circular hole under plane stress are taken. Load-displacement curves and successively fractured shapes are shown. From the results, it can be concluded that the proposed model based on the local approach concept in the continuum damage mechanics may be stated as a reasonable tool to explain ductile fracture initiation and crack propagation.

교류전위차법을 이용한 효과적인 응력확대계수의 측정 방법 (Effective Way of Measuring $K_I$ by Means of ACPD Technique)

  • 이정희
    • 비파괴검사학회지
    • /
    • 제19권1호
    • /
    • pp.8-15
    • /
    • 1999
  • 교류전위차법 (alternating current potential drop : ACPD)을 이용하여 이차원 표면균열을 갖고 있는 강자성체 (ferromagnetic material)와 상자성체 (paramagnetic material)의 모드 I (opening mode) 응력확대계수($K_I$)를 효과적으로 계측하는 방법을 개발하기 위하여 하중에 따른 교류전위차 변화(change in ACPD)에 미치는 자속(magnetic flux)의 영향을 연구하였다. 그리고 하중에 따른 전위차 변화에 미치는 탈자(demagnetization) 및 균열길이의 영향을 연구하였다. 기전력을 많이 유도할 수 있도록 설계된 계측계의 경우 하중에 따른 교류전위차 변화량은 크게 증가하였다. 아울러 교류전위차 변화와 응력확대계수 변화 사이의 관계는 탈자 등의 조치가 없어도 선형적이며, 탈자는 전위차 변화에 거의 영향을 미치지 않았다. 일정 $K_I$ 변화에 의한 전위차 변화량은 균열길이에 의존하지 않고 계측계에 의존한다. 교류전위차법을 이용하여 효과적으로 응력확대계수를 결정하는 방법은 기전력을 많이 유도할 수 있도륵 설계된 계측계를 사용하여 교류전위차 변화를 측정하는 것이다.

  • PDF