• Title/Summary/Keyword: Effective removal rate

Search Result 545, Processing Time 0.026 seconds

Development of Biological Filtration Process for Effective Nitrogen Removal in Tertiary Treatment of Sewage (생물막 여과반응기를 이용한 고도질소 제거법의 개발)

  • Jeong, Jin-Woo;Kim, Sung-Won;Tsuno, Hiroshi
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.222-229
    • /
    • 2006
  • The treatment performance and operational parameters of a tertiary wastewater treatment process a biological filtration system were investigated. The biological filtration system consisted of a nitrification filter (Fiter 1) and a polishing filter with anoxic and aerobic parts (Filter 2). SS, T-C-BOD, and T-N in effluent were kept stable at less than 3, 5 mg/L, and 5 mgN/L, respectively, under a HRT in Filter (filter-bed) of 0.37~2.3 h. T-N at the outlet of Filter 2 were about 1~5 mgN/L under the condition of LV of 50~202 m/d. In Filter 2, denitrification was accomplished under LV of 50~168 m/d in a 1 m filter-bed. However, the denitrification capacity reached the maximum when the linear velocity was increased to 202 m/d. Relationship between increase in microorganism and headloss was clearer in Filter 2. As a result, the denitrification rate increased from 1.0~2.3 kgN/($m^3-filter-bed{\cdot}d$) as the headloss increased. The COD removal rate was 6.0~9.6 kgCOD/($m^3-filter-bed{\cdot}d$) when operated with Filters 1 and 2. These results mean that captured bacteria contributed a part of COD consumption and denitrification. The maximum nitrification and denitrification rate was 0.5 and 4 kgN/($m^3-filter-bed{\cdot}d$) in Filter 1 and 2.The ratio of backwashing water to the treated water was about 5~10 %. In Filter 1, wasted sludge in backwashing was only 0.7~5.3 gSS/($m^3$-treated water). In Filter 2, added methanol was converted into sludge and its value was 8.0~24 gSS/($m^3$-treated water). These results proved that this process is both convenient to install as tertiary treatment and cost effective to build and operate.

The Effect of Mechanical Properties of Polishing Pads on Oxide CMP ( Chemical Mechanical Planarization )

  • Hong, Yi-Koan;Eom, Dae-Hong;Kang, Young-Jae;Park, Jin-Goo;Kim, Jae-Suk;Kim, Geon;Lee, Ju-Yeol;Park, In-Ha
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.445-446
    • /
    • 2002
  • The purpose of this study was to investigate the effect of micro holes, pattern structure and elastic modulus of pads on the polishing behavior such as the removal rate and WIWNU (within wafer non-uniformity) during CMP. The regular holes on the pad act as the superior abrasive particle's reservoir and regular distributor at the bulk pad, respectively. The superior CMP performance was observed at the laser processed bulk pad with holes. Also, th ε groove pattern shape was very important for the effective polishing. Wave grooved pad showed higher removal rates than K-grooved pad. The removal rate was linearly increased as the top pad's elastic modulus increased.

  • PDF

A Study on the Nutrient Removal of Wastewater Using Scenedemus sp. (Scenedesmus sp.를 이용한 하수의 영양물질 제거에 관한 연구)

  • 이희자
    • Journal of Environmental Science International
    • /
    • v.8 no.4
    • /
    • pp.443-449
    • /
    • 1999
  • This paper describe the working of algal culture system under batch and continuous feeding effluents in biological treatment process. The main objective of this study was the determination of fundamental opeating parameters such as dilution rates, light intensity, biomass concentration, nutrients contents, which engender an effective nutrient and organic waste removal process. The results of this research indicate that the algae system will remove effectively nutrient and organic waste. In batch cultures, 91.8% dissolved orthophosphate and 83.3% ammonia nitrogen were removed from the sewage in ten days. In continuous flow systems, a detention time of 2.5 days was found adequate to remove 91% T-P, 87% T-N and 95% $NH_3-N$. At 22-28$^{\circ}C$, 60 rpm, with an intensity of 3500 Lux, the specific growth rate, k was 0.59/day in batch experiments. The optimal growth temperature and nutrients rate (N/P) were respectively $25^{\circ}C$ and 3~5. With an abundant supply of untrients, it was possible to sustain substantial population densities in the temperature range of 22~28$^{\circ}C$.

  • PDF

A Study on the Optimization for the Blasting Process of Glass by Taguchi Method (다구찌 기법을 이용한 유리소재의 블라스팅 가공공정의 최적화에 관한 연구)

  • Yoo, Woo-Sik;Jin, Quan-Qia;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.2
    • /
    • pp.8-14
    • /
    • 2007
  • The powder blasting process has become an important machining technique for the cost effective fabrication of micro devices. This process is similar to sand blasting, and effectively removes hard and brittle materials. A large number of investigations on the abrasive jet machining with such output parameters as material removal rate, penetration and surface roughness have been carried out and reported by various authors. To achieve higher surface roughness, to increase material removal rate and to identify the influence of blasting parameters on the output parameters, we use the taguchi method which is one of the design methods of experiments. We can select process parameters to optimize the blasting process of glass. Experimental results indicate that the taguchi method is useful as a robust design methodology for the powder blasting process.

A Study on the Removal of Organics and Disinfection Effect in Sand Filter Using Nano Silver Sand (은나노 모래를 이용한 모래여과에서 유기물질 제거 및 소독 효과에 관한 연구)

  • Seon, Yong-Ho
    • KSBB Journal
    • /
    • v.27 no.1
    • /
    • pp.16-20
    • /
    • 2012
  • In this study, novel nano silver sand filtration method was compared with UV treatment and normal sand filtration method through filtering treated water from sewage treatment plant. As a result, $BOD_5$ removal rate of nano silver sand filtration showed higher approximately 31% and 23%, comparing with UV treatment and sand filtration. Moreover, $KMnO_4$ removal rate of nano silver sand was about 6.6 and 2.8 times higher than other two methods. In addition, it showed better for removing SS and total coliform, comparing with others. Also, there is no bacteria on nano silver sand after experiments. Therefore, nano silver sand filtration will be effective for advanced water treatment.

The Coagulation Characteristics of Wastewater Using Poly-γ-glutamic Acid (Poly-γ-glutamic acid(PGA)를 이용한 폐수의 응집특성)

  • Kwon, Kwi-bock;Kim, Dong-ha;Kang, Seon-Hong;Sung, Moon-Hee;Park, Chung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.3
    • /
    • pp.357-362
    • /
    • 2005
  • Poly-${\gamma}$-glutamic acid (${\gamma}-PGA$), which is extracted from fermented soybeans, is a high molecular weight, adhesive, and negatively charged(anionic) polymer. Recently, ${\gamma}-PGA$ has gained attention due to its potential as polymer. The objectives of this study were to examine the applicability of ${\gamma}-PGA$ as a coagulant and/or a coagulant aid, to evaluate the efficiency of ${\gamma}-PGA$ for the removal of Organic and Ammonium substance in wastewater treatment. The effect of coagulation was evaluated for the removal of SS and organic matter using poly aluminum chloride(PACI) as well as newly developed ${\gamma}-PGA$. The maximum COD removal rate of 63% and the SS of 78% were occurred at the dosage of 50mg/L ${\gamma}-PGA$ only. The most effective removal for particulate and organic matter was occured when both PACI and ${\gamma}-PGA$ were applied at the rate of 20:1(10mg/L PACI and 0.5mg/L ${\gamma}-PGA$). When mixed with PACI, only small portion of ${\gamma}-PGA$ was enough to improve removal efficiencies of organic and particulate matter in wastewater. This result showed the positive potential of ${\gamma}-PGA$ as a new coagulant materials for wastewater treatment.

Operation evaluation of DAF pilot plant for water treatment process in Hoedong Reservoir (회동수원지의 정수처리 공정을 위한 DAF pilot plant 운영 성능평가)

  • Maeng, Minsoo;Shahi, Nirmal Kumar;Kim, Donghyeun;Shin, Gwyam;Dockko, Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.463-471
    • /
    • 2020
  • A 1,000 ㎥/d DAF(dissolved air flotation) pilot plant was installed to evaluate the performance of the floating process using the Nakdong River. Efficiency of various DAF operations under different conditions, such as hydraulic loading rate, coagulant concentration was evaluated in the current research. The operation conditions were evaluated, based on the removal or turbidity, TOC(total organic carbon), THMFP(trihalomethane formation potential), Mn(manganese), and Al(aluminum). Also, particle size analysis of treated water by DAF was performed to examine the characteristics of particles existing in the treated water. The turbidity removal was higher than 90%, and it could be operated at 0.5 NTU or less, which is suitable for the drinking water quality standard. Turbidity, TOC, and THMFP resulted in stable water quality when replacing the coagulant from alum to PAC(poly aluminum chloride). A 100% removal of Chl-a was recorded during the summer period of the DAF operations. Mn removal was not as effective as where the removal did not satisfy the water quality standards for the majority of the operation period. Hydraulic loading of 10 m/h, and coagulant concentrations of 40 mg/L was determined to be the optimal operating conditions for turbidity and TOC removal. When the coagulant concentration increases, the Al concentration of the DAF treated water also increases, so coagulant injection control is required according to the raw water quality. Particle size distribution results indicated that particles larger than 25 ㎛ showed higher removal rates than smaller particles. The total particel count in the treated water was 2,214.7 counts/ml under the operation conditions of 10 m/h of hydraulic loading rate and coagulant concentrations of 60 mg/L.

Treatment of Fish Processing Wastewater Using Sequencing Batch Reactor (SBR) (연속회분식 반응기를 이용한 수산물 가공폐수 처리)

  • Paik, Byeong Cheon;Shin, Hang Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.8 no.1
    • /
    • pp.18-26
    • /
    • 1994
  • This research investigated efficient operation mode for the successful performance of SBR(sequencing batch reactor) treating fish processing wastewater, and the effect of sodium chloride (NaCl) on treatment efficiency. 2-hour-annerobic, 6-hour-aerobic and 3-hour-anoxic operation during reaction period was found an effective operating method for organic and nitrogen removal from fish processing wastewater in SBR system. The average removal efficiencies of COD, BOD, and total nitrogen in SBR operated continuousely were 91%, 95%, and 67.1%, respectively. The estimated values of biomass yield coefficient(Y), microbial decay coefficient($K_d$), and bioreaction rate constant(K) were $0.35gMLSS/gCOD_{removed}$, $0.015day^{-1}$, and $0.209hr^{-1}$, respectively. As NaCl concentration increased from 5 to 30g/L, sludge settleability was cnhanced but organic removal in the reactor was decreased. NaCl of influent had considerable relationship with COD removal, whereas it did not significant affect nitrogen removal.

  • PDF

Nanoporous carbon synthesized from grass for removal and recovery of hexavalent chromium

  • Pathan, Shahin A.;Pandita, Nancy S.
    • Carbon letters
    • /
    • v.20
    • /
    • pp.10-18
    • /
    • 2016
  • Nanoporous carbon structures were synthesized by pyrolysis of grass as carbon precursor. The synthesized carbon has high surface area and pore volume. The carbon products were acid functionalized and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, Brunauer–Emmett–Teller, transmission electron microscopy, and Energy Dispersive X-ray microanalysis. Acid functionalized nanoporous carbon was explored for use in removal of toxic Cr(VI) ions from aqueous media. An adsorption study was done as a function of initial concentration, pH, contact time, temperature, and interfering ions. The experimental equilibrium data fits well to Langmuir isotherm model with maximum monolayer adsorption capacity of 35.335 mg/g. The results indicated that removal obeys a pseudo-second-order kinetic model, and that equilibrium was reached in 10 min. A desorption study was done using NaOH. The results of the present study imply that acid functionalized nanoporous carbon synthesized from grass is an efficient, renewable, cost-effective adsorbent material for removal of hexavalent chromium due to its faster removal rate and reusability.

Color Removal from Disperse Dye Solution Using White Rot Fungi (백색부후균을 이용한 분산염료용액의 색 제거)

  • 이현욱;손동찬;임동준
    • Textile Coloration and Finishing
    • /
    • v.12 no.1
    • /
    • pp.32-43
    • /
    • 2000
  • Batch culture system and continuous culture systems were used to investigate the removal of disperse dye using white rot fungi. White rot fungi used in the study were Coriolus hirsutus IFO 4917, Lenzites betulina IFO 6266, Coriolus versicolor IFO 30340 and Phanerochaete chrysosporium IFO 31249. The results of the batch culture experiment showed that white rot fungi used in this study had excellent dye removal abilities. Phnerochete chrysosporium IFO 31249 was especially effective on the removal of disperse dyes. And continuous treatment of disperse red 60 was studied under two type of reactor using Phanerochaete chrysosporium IFO 31249. The removal efficiency of disperse red 60 for immobilized Phanerochaete chrysosporium IFO 31249 in continuous reactor with vertical matrix was increased 1.3 fold in $1.4\;hr^{-1}$ dilution rate when compared with continuous reactor without vertical matrix.

  • PDF