• Title/Summary/Keyword: Effective compressive stiffness

Search Result 56, Processing Time 0.025 seconds

Confinement efficiency and size effect of FRP confined circular concrete columns

  • Yeh, Fang-Yao;Chang, Kuo-Chun
    • Structural Engineering and Mechanics
    • /
    • v.26 no.2
    • /
    • pp.127-150
    • /
    • 2007
  • The objective of this paper is to develop a finite element procedure for predicting the compressive strength and ultimate axial strain of Carbon Fiber Reinforced Plastics (CFRP) confined circular concrete columns and to study the effective parameters of confinement efficiency for helping design of CFRP retrofit technology. The behavior of concrete confined with CFRP is studied using the nonlinear finite element method. In this paper, effects of column size, CFRP volumetric ratio and plain concrete strength are studied. The confined concrete nonlinear constitutive relation, concrete failure criterion and stiffness reduction methodology after concrete cracking or crushing are adopted. First, the finite element model is verified by comparing the numerical solutions of confined concrete with experimental results. Then the effects of column size, CFRP volumetric ratio and plain concrete strength on the peak strength and ductility of the confined concrete are considered. The results of parametric study indicate that the normalized column axial strength increases with increasing CFRP volumetric ratio, but without size effect for columns with the same CFRP volumetric ratio. As the same, the increase in column ductility depends on CFRP volumetric ratio but without size effect for columns with the same CFRP volumetric ratio.

Effects of deficiency location on CFRP strengthening of steel CHS short columns

  • Shahabi, Razieh;Narmashiri, Kambiz
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.267-278
    • /
    • 2018
  • Structures may need retrofitting as a result of design and calculation errors, lack of proper implementation, post-construction change in use, damages due to accidental loads, corrosion and changes introduced in new editions of construction codes. Retrofitting helps to compensate weakness and increase the service life. Fiber Reinforced Polymer (FRP) is a modern material for retrofitting steel elements. This study aims to investigate the effect of deficiency location on the axial behavior of compressive elements of Circular Hollow Section (CHS) steel short columns. The deficiencies located vertically or horizontally at the middle or bottom of the element. A total of 43 control column and those with deficiencies were investigated in the ABAQUS software. Only 9 of them tested in the laboratory. The results indicated that the deficiencies had a significant effect on the increase in axial deformation, rupture in deficiency zone (local buckling), and decrease in ductility and bearing capacity. The damages of steel columns were responsible for resistance and stiffness drop at deficiency zone. Horizontal deficiency at the middle and vertical deficiency at the bottom of the steel columns were found to be the most critical. Using Carbon Fiber Reinforced Polymer (CFRP) as the most effective material in retrofitting the damaged columns, significantly helped the increase in resistance and rupture control around the deficiency zone.

Modification of Starch for Surface Sizing via Etherification and Esterification (에테르화 및 에스테르화를 통한 표면사이징용 변성 전분의 제조)

  • Jeong, Young Bin;Lee, Hak Lae;Youn, Hye Jung;Ji, Kyoung Rak;Kim, Young Seok
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.6
    • /
    • pp.50-55
    • /
    • 2014
  • An oxidized starch was modified for surface sizing via etherification and esterification. Propylene oxide (PO), sodium monochloroacetate (SMCA), and acrylonitrile (AN) were used as etherification, and vinyl acetate monomer (VAM), maleic anhydride (MA), fumaric acid (FA), and itaconic acid (ITA) were used for esterification. Esterification and etherification of starch decreased both Brookfield viscosity and Brabender viscosity substantially even though the solids level was increased by 2% from 14 to 16%. Surface sizing performance of starches in tensile strength, stiffness and compressive strength was improved by esterification and etherification of the oxidized starch. Especially, SMCA etherification was found to be the most effective modification method.

Ultimate strength behavior of steel-concrete-steel sandwich beams with ultra-lightweight cement composite, Part 1: Experimental and analytical study

  • Yan, Jia-Bao;Liew, J.Y. Richard;Zhang, Min-Hong;Wang, Junyan
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.907-927
    • /
    • 2014
  • Ultra-lightweight cement composite (ULCC) with a compressive strength of 60 MPa and density of $1450kg/m^3$ has been developed and used in the steel-concrete-steel (SCS) sandwich structures. ULCC was adopted as the core material in the SCS sandwich composite beams to reduce the overall structural weight. Headed shear studs working in pairs with overlapped lengths were used to achieve composite action between the core material and steel face plates. Nine quasi-static tests on this type of SCS sandwich composite beams were carried out to evaluate their ultimate strength performances. Different parameters influencing the ultimate strength of the SCS sandwich composite beams were studied and discussed. Design equations were developed to predict the ultimate resistance of the cross section due to pure bending, pure shear and combined action between shear and moment. Effective stiffness of the sandwich composite beam section is also derived to predict the elastic deflection under service load. Finally, the design equations were validated by the test results.

Performance Test of C-shape Steel Base Isolation System (C형 강재 지진격리장치의 성능시험)

  • Jung, Dae-Yu;Shim, Chul-Hwan;Park, Hyung-Ghee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.25-35
    • /
    • 2009
  • This paper introduces the performance of a newly developed base isolation system made from the combination of a polyurethane disk - attached pot bearing and C-shape steel dampers. Ultimate compressive load tests, ultimate rotation tests, dynamic tests, and dynamic load repeat tests have been completed to determine dynamic characteristics and to verify performance characteristics. The experimental results are compared with the analytic results. It is determined that all requirements for bridge bearing in the specifications are satisfied, and that adequate energy dissipation has occurred. The EDC and effective stiffness estimated by tests are similar to the theoretical values.

Multi-objective optimization of anisogride composite lattice plate for free vibration, mass, buckling load, and post-buckling

  • F. Rashidi;A. Farrokhabadi;M. Karamooz Mahdiabadi
    • Steel and Composite Structures
    • /
    • v.52 no.1
    • /
    • pp.89-107
    • /
    • 2024
  • This article focuses on the static and dynamic analysis and optimization of an anisogrid lattice plate subjected to axial compressive load with simply supported boundary conditions. The lattice plate includes diagonal and transverse ribs and is modeled as an orthotropic plate with effective stiffness properties. The study employs the first-order shear deformation theory and the Ritz method with a Legendre approximation function. In the realm of optimization, the Non-dominated Sorting Genetic Algorithm-II is utilized as an evolutionary multi-objective algorithm to optimize. The research findings are validated through finite element analysis. Notably, this study addresses the less-explored areas of optimizing the geometric parameters of the plate by maximizing the buckling load and natural frequency while minimizing mass. Furthermore, this study attempts to fill the gap related to the analysis of the post-buckling behavior of lattice plates, which has been conspicuously overlooked in previous research. This has been accomplished by conducting nonlinear analyses and scrutinizing post-buckling diagrams of this type of lattice structure. The efficacy of the continuous methods for analyzing the natural frequency, buckling, and post-buckling of these lattice plates demonstrates that while a degree of accuracy is compromised, it provides a significant amount of computational efficiency.

A Study on the Development of Persimmon Juice Dyed Print-fabrics following the Printing Method and a Comparative Study of the Products' Properties (감즙염색포의 날염방법에 따른 문양직물의 개발과 그 특성에 관한 연구)

  • Park, Soon-Ja
    • The Korean Journal of Community Living Science
    • /
    • v.23 no.3
    • /
    • pp.317-328
    • /
    • 2012
  • In this study, printing was introduced to the common dip-dyeing method of persimmon juice dyeing so as to develop two different colored persimmon juice dyed fabrics with printings of 'jorangmal' patterns (a national monument) instead of producing a plain textile. Following are the results of a comparative study between the persimmon dyed fabric and undyed fabric, both with printings, in terms of its properties, and hand values. Cotton and rayon were chosen as samples and were compared separately. Firstly, the samples showed differences in terms of clarity and visual sensation depending on the presence of persimmon dye, even if the same pattern and color was used. Secondly, the air permeability of two samples improved after persimmon dyeing even though their thickness increased, and their moisture regain increased as well in all humidity conditions. Thirdly, protectiveness against UV increased in dyed samples, and sweat, sunlight, and compound colorfastness improved in printed dye-fabrics compared to plain dyed ones. Therefore, printing proved to be effective in preventing discoloration. Fourthly, tensile linearity and resilience, bending rigidity, compressive linearity and resilience, and shearing stiffness increased more in the dyed samples compared to undyed ones. However, shearing recovery decreased in both dyed fabrics. Fifthly, the result of its hand value showed that Koshi value increased in all samples than undyed ones, whereas Fukurami, Numeri, and Softosa values decreased. Incorporating printing in persimmon dyeing process could expect creative outcomes not only in today's diverse fashion but in areas of arts or crafts as well.

A Study on Applicability of the Calculation Method for Settlement of Stone Column (쇄석말뚝의 침하량 산정방법 적용성에 관한 연구)

  • Han, Sangsoo;Jung, Suntae;Lee, Jinhyung;Kim, Bokyoung;Kim, Kyungmin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.3
    • /
    • pp.5-12
    • /
    • 2016
  • Stone column is the method that replace soft ground such as weak clay and loose sand with gravel or crushed stone which has relatively high stiffness and low compressive. Stone column increases bearing capacity of the soft ground, reduces settlement, produces ground improvement effect by consolidation drain, and is effective to prevent soil liquefaction in sandy ground during an earthquake. Stone column has been used in many civil works, and has recorded quite a lot of construction achievement internationally, but there is no standardized settlement calculation method yet. Therefore, in this study, the applicability of the existing theoretical equations were evaluated through comparison and analysis to predict a reasonable settlement of the Stone column. Consequently, Hook's law formula was verified to be the most close to numerical analysis.

The Basic Study of Semi-Rigid Connections with Reformed T-stubs (개량 T-stub 반강접합부의 기초적 연구)

  • Yu, Bong Huoun;Lee, Myung Jae;Kim, WonKi
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.479-487
    • /
    • 1997
  • The use of semi-rigid joints can be considered in the beam-to-column connections of buildings. The advantages of semi-rigid joints can be found in the convenience of construction and the ability of effective moment distribution of members. This study is a basic step to acertain the application of middle high rise buildings by using reformed T-stub, of which rotation capacity is thought to be excellent compared with that of existing T-stubs. The tests of tensile and compressive elements of reformed T-stubs were performed to investigate the behavior of reformed T-stubs. The beam-to-column connections using reformed T-stubs are tested under monotonic loading. The structural behaviors of reformed T-stubs were understood qualitatively and the possibility of application of semi-rigid connections with reformed T-stub was acertained.

  • PDF

Development of new antibacterial materials for manufacturing functional corrugated board for agricultural products (농산물용 기능성 골판지 제조를 위한 신규 항균재료 개발에 대한 연구)

  • Yoon, Hee-Youl;Oh, Seok-Ju;Lee, Ji-Young;Kim, Byeong-Ho;Lim, Gi-Baek;Choi, Jae-Sung;Kim, Sun-Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.3
    • /
    • pp.34-40
    • /
    • 2012
  • In this study, new antibacterial materials were developed to manufacture a functional corrugated board. Sulfur solution, a new antibacterial solution made from inorganic sulfur in the laboratory, and other antibacterial mat erials were adopted to treat the surface of a linerboard. We measured the antibacteriocidal and bacteriostatic activities, as well as the fungal resistance of the surface-treated linerboards, to identify the antibacterial properties. The mechanical properties of the surface-treated linerboard were also determined in order to identify the effects of the antibacterial materials on linerboard properties. Linerboard treated with sulfur solution, PVOH, and sodium metasulfite showed the highest antibacterial activity, while linerboard treated with sulfur solution and nano sulfur showed the highest fungal resistance. It was identified that sulfur solution has effective antibacterial properties. The antibacterial materials did not affect the mechanical properties of the surface-treated linerboard, but the binder showed significant effects in terms of the burst strength, the compressive strength, and the stiffness of the linerboard.