• 제목/요약/키워드: Effective air mass ratio

검색결과 40건 처리시간 0.025초

실린더형 HE 탄두 폭발 시 파편의 속도 및 발사각 추정방법 연구 (The Study on the Fragment Ejection Velocity and Spray Angle from a High Explosive Cylindrical Warhead)

  • 황창수;박용헌;박세권;정대한;이문식;강순부;김득수
    • 한국항공우주학회지
    • /
    • 제47권12호
    • /
    • pp.904-912
    • /
    • 2019
  • 본 연구는 항공기에 근접하여 폭발하는 고폭형 위협 무기의 파편 발사속도 및 발사각을 수치 해석적으로 추정한 결과이다. 고폭형 위협 무기에 대한 항공기의 취약성을 평가하기 위하여 탄두 구성품의 물리량을 이해하는 것은 매우 중요하다. 일반적으로 고폭형 위협 무기에 대한 구성품의 질량, 길이 및 직경 등 물리적 변수는 알려져 있지 않다. Terrier, Sparrow 등 유사 위협 무기들의 데이터를 이용하여 charge to mass 비율, 길이와 직경 비율 등과 관련된 경험식을 수치 해석적으로 유도하였다. 근접신관에 의하여 외부에 폭발하는 탄두에서 탄두 덮개 구성비는 20% 수준으로 나타났으며, 고폭 화약의 양쪽 끝부분에서 방사되는 파편의 발사속도 구배 현상이 뚜렷이 나타났지만 법선 방향에 대한 발사각은 6° 이내로 나타났다.

다회수 스파크 점화기관의 기관성능에 관한 연구 (A study on the engine performance in a multiple spark ignition engine)

  • 이성열;한병호
    • 오토저널
    • /
    • 제10권4호
    • /
    • pp.66-74
    • /
    • 1988
  • The ignition quality of ignition system is influenced by spark energy, discharge pattern of spark energy and spark duration. In this paper, the characteristics of multiple spark ignition system have been investigated for various number of spark and spark interval. The results, which were compared with those obtained with a standard single spark ignition, show that engine output is increased, and lean misfire limit is extended with the multiple spark ignition system. The most effective number of spark at the most effective spark interval that are determined by engine performance test, were 6 times spark at 0.02ms spark interval. For the above condition of spark, engine torque was increased about 20% comparing with conventional ignition system and lean misfire limit was extended to air-fuel ratio 22.5:1. This study researched the rate of heat release and quantity of heat release influenced by a condition of spark on the mass burned in order to investigate the relationship between the rate of mass burned and number of spark times.

  • PDF

R22/R142b 혼합냉매를 사용한 열펌프의 성능 (Experimental Study on the Performance of Heat Pump Using Refrigerant Mixture R22/R142b)

  • 김민수;장세동;노승탁
    • 설비공학논문집
    • /
    • 제4권1호
    • /
    • pp.33-47
    • /
    • 1992
  • Experimental investigation on the performance of a heat pump system using refrigerant mixtures is done. The condenser and the evaporator are double pipe heat exchangers of counter flow type and the compressor is driven by a variable speed motor. The refrigerant mixture used in the experiment is R22/R142b. Experiments are performed by changing the compressor speed, composition on ratio of mixture, and the average temperatures of condenser and evaporator. The compressor work, heating capacity and the coefficient of performance are calculated. Results show that the heating capacity can be changed by varying the mass flow rate of refrigerant mixtures to meet the heating load. It is shown that the capacity control by changing the composition ratio is more effective than by changing the compressor speed. Under the condition where the external conditions are fixed and the heating loads are equal, the coefficient of performance has its maximum value near 50 : 50 mass fraction of the refrigerant mixture in this study.

  • PDF

반응표면기법에 의한 고분자전해질형 연료전지 시스템의 최적화 (Optimization of PEM Fuel Cell System Using a RSM)

  • 현동길;김진완;남양해;닝천;김영배
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3140-3141
    • /
    • 2008
  • The output power efficiency of the fuel cell system depends on the demanded current, stack temperature, air excess ratio, hydrogen excess ratio and inlet air humidity. Thus, it is necessary to determine the optimal operation condition for maximum power efficiency. In this paper, we developed a dynamic model of fuel cell system which contains mass flow model, diffusivity gas layer model, membrane hydration and electrochemistry model. In order to determine the maximum output power and minimum use of hydrogen in a certain power condition, response surface methodology (RSM) optimization based on the proposed PEMFC stack model is presented. The results provide an effective method to optimize the operation condition under varied situations.

  • PDF

보텍스튜브의 노즐에 대한 실험적 연구 (Experimental Study to Nozzle of Vortex Tube)

  • 유갑종;방창훈
    • 태양에너지
    • /
    • 제19권4호
    • /
    • pp.1-10
    • /
    • 1999
  • The phenomena of energy separation through the vortex tube was investigated experimentally, to see the effect of nozzle area ratio and partial admission rate on the energy separation and cooling capacity. The experiment was tarried out with various nozzle area ratios from 0.031 to 0.232 and partial admission rate from 0.176 to 0.956 by varying input pressure($0.2{\si\m}0.5$ MPa) and cold air mass fraction($y=0.1{\sim}1.0$). From the experimental result, we found the optimum nozzle area ratio and the effective partial admission rate for the available use and best cooling performance in given operation condition. While the maximum drop of cold air temperature was observed at around y=0.3 and $S_n=0.155$, the maximum cooling capacity was observed at around y=0.6 and $S_n=0.094$.

  • PDF

Characteristics of NOx Emission with Flue Gas Dilution in Air and Fuel Sides

  • Cho, Eun-Seong;Chung, Suk Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제18권12호
    • /
    • pp.2303-2309
    • /
    • 2004
  • Flue gas recirculation (FGR) is a method widely adopted to control NOx in combustion system. The recirculated flue gas decreases flame temperature and reaction rate, resulting in the decrease in thermal NO production. Recently, it has been demonstrated that the recirculated flue gas in fuel stream, that is, the fuel induced recirculation (FIR), could enhance a much improved reduction in NOx per unit mass of recirculated gas, as compared to the conventional FGR in air. In the present study, the effect of FGR/FIR methods on NOx reduction in turbulent swirl flames by using N$_2$ and CO$_2$ as diluent gases to simulate flue gases. Results show that CO$_2$ dilution is more effective in NO reduction because of large temperature drop due to the larger specific heat of CO$_2$ compared to N$_2$ and FIR is more effective to reduce NO emission than FGR when the same recirculation ratio of dilution gas is used.

Numerical Study on NO Emission with Flue Gas Dilution in Air and Fuel Sides

  • Cho Eun-Seong;Chung Suk Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제19권6호
    • /
    • pp.1358-1365
    • /
    • 2005
  • Flue gas recirculation (FGR) is widely adopted to control NO emission in combustion systems. Recirculated flue gas decreases flame temperature and reaction rate, resulting in the decrease in thermal NO production. Recently, it has been demonstrated that the recirculated flue gas in fuel stream, that is, the fuel induced recirculation (FIR), could enhance much improved reduction in NO per unit mass of recirculated gas, as compared to conventional FGR in air. In the present study, the effect of dilution methods in air and fuel sides on NO reduction has been investigated numerically by using $N_2$ and $CO_2$ as diluent gases to simulate flue gases. Counterflow diffusion flames were studied in conjunction with the laminar flamelet model of turbulent flames. Results showed that $CO_2$ dilution was more effective in NO reduction because of large temperature drop due to the larger specific heat of $CO_2$ compared to $N_2$. Fuel dilution was more effective in reducing NO emission than air dilution when the same recirculation ratio of dilution gas was used by the increase in the nozzle exit velocity, thereby the stretch rate, with dilution gas added to fuel side.

직접분사식 소형 디젤엔진의 실린더내 스월 유동장에 미치는 흡기포트의 형상에 관한 연구 (A Study on the Effects of Intake Port Geometry on In-Cylinder Swirl Flow Field in a Small D.I. Diesel Engine)

  • 이기형;한용택;정해영;임영철
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.38-45
    • /
    • 2004
  • This paper studies the effects of intake port configuration on the swirl that is key parameter in the flow field of direct injection diesel engines. In-cylinder flow characteristics is known to have significant effects on fuel air mixing, combustion and emissions. To investigate the swirl flow generated by various intake ports, steady state flow tests were conducted to evaluate the swirl. Helical port geometry, SCV shape and bypass were selected as the design parameters to increase the swirl flow and parametric study was performed to choose the optimal port shape that would generate a high swirl ratio efficiently. The results revealed that a key factor in generating a high swirl ratio was to suitably control the direction of the intake air flow passing through the valve seat. For these purposes, we changed the distance of helical and tangential port as well as installed bypass near the valve seat and the effects of intake port geometry on in-cylinder flow field were visualized by a laser sheet visualization method. From the experimental results, we found that the swirl ratio and mass flow rate had a trade off relation. In addition, the result indicates that the bypass is a effective method to increase the swirl ratio without sacrificing mass flow rate.

보텍스튜브에서 랭퀴-힐쉬효과와 줄-톰슨효과가 에너지분리에 미치는 영향 (The Influence of Ranque-Hilsch Effect and Joule-Thomson Effect to Energy Separation in a Vortex Tube)

  • 유갑종;방창훈;김병하
    • 설비공학논문집
    • /
    • 제12권8호
    • /
    • pp.703-710
    • /
    • 2000
  • Energy separation characteristic occurring in a counterflow vortex tube was studied experimentally, where air, $C_2$, and R22 were used as working fluids. The experiments were carried out with pressure ratio from 3 to 8 and cold mass fraction(y) from 0.1 to 0.9. As results, Ranque-Hilsch effect showed different results from adiabatic expansion process. Temperature difference in vortex tube outlet was affected by Joule-Thomson effect as well as Ranque-Hilsch effect. The more effective the energy separation was, the more increased the entropy in the cold oulet of vortex tube was.

  • PDF

공기조화기 장착용 축상유입식 싸이클론의 입자제거효율에 대한 실험적 연구 (Experimental Study on Particle Collection Efficiency of Axial-flow Cyclone in Air Handling Unit)

  • 김세영;권순박;박덕신;조영민;김진호;김명준;김태성
    • 한국대기환경학회지
    • /
    • 제27권3호
    • /
    • pp.272-280
    • /
    • 2011
  • A novel particle removal system for air handling unit (AHU) of subway station was evaluated experimentally. The novel system was designed in order to minimize the maintenance cost by applying axial-flow cyclones. The system consists of multiple cyclone units and dust trap. Based on our previous numerical study, it was found to be effective for removal $1\sim10{\mu}m$ sized dust particles. In this study, we manufactured the mock-up model and evaluated the model experimentally. Liquid and solid test particles were generated for evaluating collection efficiency of the system and the pressure drop was monitored. The collection efficiency was varied from 41.2% to 85.9% with increasing the sizes of particle from 1 to $6.5{\mu}m$ by particle count ratio of inlet and outlet. The pressure drop was maintained constant less than $20mmH_2O$. In addition, the collection efficiency was estimated by total mass for solid test particles. It was found that the collection efficiency was 65.7% by particle mass ratio of inlet and outlet. It shows that present system can replace current pre-filters used in subway HVAC system for removing particulate matters with minimal operational cost.