• Title/Summary/Keyword: Effective Throughput

Search Result 372, Processing Time 0.017 seconds

Neuro-Restorative Effect of Nimodipine and Calcitriol in 1-Methyl 4-Phenyl 1,2,3,6 Tetrahydropyridine-Induced Zebrafish Parkinson's Disease Model

  • Myung Ji Kim; Su Hee Cho; Yongbo Seo; Sang-Dae Kim; Hae-Chul Park; Bum-Joon Kim
    • Journal of Korean Neurosurgical Society
    • /
    • v.67 no.5
    • /
    • pp.510-520
    • /
    • 2024
  • Objective : Parkinson's disease (PD) is one of the most prevalent neurodegenerative diseases, characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta. The treatment of PD aims to alleviate motor symptoms by replacing the reduced endogenous dopamine. Currently, there are no disease-modifying agents for the treatment of PD. Zebrafish (Danio rerio) have emerged as an effective tool for new drug discovery and screening in the age of translational research. The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is known to cause a similar loss of dopaminergic neurons in the human midbrain, with corresponding Parkinsonian symptoms. L-type calcium channels (LTCCs) have been implicated in the generation of mitochondrial oxidative stress, which underlies the pathogenesis of PD. Therefore, we investigated the neuro-restorative effect of LTCC inhibition in an MPTP-induced zebrafish PD model and suggested a possible drug candidate that might modify the progression of PD. Methods : All experiments were conducted using a line of transgenic zebrafish, Tg(dat:EGFP), in which green fluorescent protein (GFP) is expressed in dopaminergic neurons. The experimental groups were exposed to 500 μmol MPTP from 1 to 3 days post fertilization (dpf). The drug candidates : levodopa 1 mmol, nifedipine 10 μmol, nimodipine 3.5 μmol, diethylstilbestrol 0.3 μmol, luteolin 100 μmol, and calcitriol 0.25 μmol were exposed from 3 to 5 dpf. Locomotor activity was assessed by automated tracking and dopaminergic neurons were visualized in vivo by confocal microscopy. Results : Levodopa, nimodipine, diethylstilbestrol, and calcitriol had significant positive effects on the restoration of motor behavior, which was damaged by MPTP. Nimodipine and calcitriol have significant positive effects on the restoration of dopaminergic neurons, which were reduced by MPTP. Through locomotor analysis and dopaminergic neuron quantification, we identified the neuro-restorative effects of nimodipine and calcitriol in zebrafish MPTP-induced PD model. Conclusion : The present study identified the neuro-restorative effects of nimodipine and calcitriol in an MPTP-induced zebrafish model of PD. They restored dopaminergic neurons which were damaged due to the effects of MPTP and normalized the locomotor activity. LTCCs have potential pathological roles in neurodevelopmental and neurodegenerative disorders. Zebrafish are highly amenable to high-throughput drug screening and might, therefore, be a useful tool to work towards the identification of disease-modifying treatment for PD. Further studies including zebrafish genetic models to elucidate the mechanism of action of the disease-modifying candidate by investigating Ca2+ influx and mitochondrial function in dopaminergic neurons, are needed to reveal the pathogenesis of PD and develop disease-modifying treatments for PD.

A Comparison of Discriminating Powers Between 14 Microsatellite markers and 60 SNP Markers Applicable to the Cattle Identification Test (소 동일성 검사에 적용 가능한 14 Microsatellite marker와 60 Single Nucleotide Polymorphism marker 간의 판별 효율성 비교)

  • Lim, Hyun-Tae;Seo, Bo-Yeong;Jung, Eun-Ji;Yoo, Chae-Kyoung;Yoon, Du-Hak;Jeon, Jin-Tae
    • Journal of Animal Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.353-360
    • /
    • 2009
  • When 14 microsatellite (MS) markers were applied in the identifying test for 480 Hanwoo, the discriminating power was estimated as $3.43{\times}10^{-27}$ based on the assumption of a random mating group (PI). This rate is 1,000 times higher than that of 60 single nucleotide polymorphism (SNP) markers. On the other hand, the power of the 60 SNP markers was estimated as $4.69{\times}10^{-20}$ and $8.02{\times}10^{-12}$ on the assumption of a half-sib mating group ($PI_{half-sibs}$) and a full-sib mating group ($PI_{sibs}$), respectively. These powers were 10 times and 10,000 times higher than those of the 14 MS markers. The results indicated that the total number of alleles (MS vs SNP = 146 vs 120) acted as a key factor for the discriminating power in a random mating population, and the total number of markers (MS vs SNP = 14 vs 60) was a dominant influence on the power in half-sib and full-sib populations. In the Hanwoo population, in which it was assumed that the entire population is the enormous half-sib group formed by the absolute genetic contribution of a few nuclear bulls, there will be only a 10 times difference in the discriminating power between the 14 MS markers and the 60 SNP makers. However, the probability of not excluding a candidate parent pair from the parentage of an arbitrary offspring, given that only the genotype of the offspring ($PNE_{pp}$) was 1,000 times higher as shown by the 14 MS markers than that by the 60 SNP markers. The strong points of SNP makers are the stability of the variation (low mutation rate) and automation of high-throughput genotyping. In order to apply these merits for the practical and constant Hanwoo identity test, research and development are required to set a cost-effective platform and produce a homemade apparatus for SNP genotyping.