• Title/Summary/Keyword: Effective Stress

Search Result 3,752, Processing Time 0.032 seconds

Three Dimensional Strength Characterisics of Compressible Sand (압축성 모래의 3차원 전단강도 특성)

  • Park, Byeong-Gi;Jeong, Jin-Seop;Im, Seong-Cheol
    • Geotechnical Engineering
    • /
    • v.6 no.3
    • /
    • pp.65-76
    • /
    • 1990
  • A series of consolidated drained and untrained cubical triaxial tests were performed to investigate three dimensional strength characteristics of compressible sand. All specimens, which are formed by deposisting a fine sand loosely, were used. Failure strength in terms of effective stress analysis was greatly influenced by the variation of intermediate principal stress and so was failure criterion The adjusted effective frictional angles obtained by the stress state projected on the same octahedral plane showed almost same value, while the measured effective frictional angles showed considerable difference depending on the drainage conditions. Results of total stress analysis in undrained test turned out to fit Tresca's failure criterion well, but results of effective stress analysis turned out to fit Lade's failure criterion well.

  • PDF

Constitutive Model for Unsaturated Soils Based on the Effective Stress (유효응력에 근거한 불포화토의 역학적 구성모델)

  • Shin, Ho-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.11
    • /
    • pp.55-69
    • /
    • 2011
  • The importance of unsaturated state in various geo-engineering problems has led to the advance of mechanical constitutive model emulating behavior of unsaturated soils in response to thermo-hydro-mechanical loading. Elasto-plastic mechanical constitutive model for unsaturated soil is formulated based on Bishop's effective stress. Effective stress and temperature are main variables in constitutive equation, and incremental formulation of constitutive relationship is derived to compute stress update and stiffness tensor. Numerical simulations involving coupled THM processes are conducted to discuss numerical stability and applicability of developed constitutive model: one-dimensional test, tri-axial compression test, and clay-buffering at high level radioactive waste disposal. Numerical results demonstrated that developed model can predict very complex behavior of coupled THM phenomena and is applicable to geo-engineering problems under various environmental conditions, as well as interpret typical behavior of unsaturated soils.

Effective Stiffness of Circular Reinforced Bridge Columns (철근콘크리트 원형단면 교각의 유효강성)

  • 배성용;김준범;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.833-838
    • /
    • 2001
  • The objectives of this study are to investigate effective stiffness of circular reinforced bridge columns and to provide reasonable effective stiffness equations for seismic design to the current Korean Bridge Design Standard. The material nonlinear analysis was conducted for 5184 columns of which variables were the concrete compressive stress, the steel yielding stress, the longitudinal steel location parameter, the longitudinal steel ratio, the axial load level, and the diameter of section. The current Korean Bridge Design Standard generally used the gross section stiffness because of unclear provision, it may be non-conservative because of being evaluated greater design seismic force and less design displacement than those of the abroad provision. Therefore, the proposed effective stiffness equations include three variables such as : the longitudinal steel location parameter, the longitudinal steel ratio, and the axial load ratio. Two equations of effective stiffness are proposed which may be used for earthquake force estimation and for earthquake displacement estimation, respectively.

  • PDF

Yielding Effective Stiffness of Rectangular RC Bridge Columns for Design Seismic Force (설계지진력 해석시의 철근콘크리트 사각단면교각의 항복유효강성)

  • 배성용;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.941-946
    • /
    • 2001
  • The objectives of this study are to investigate effective stiffness of Rectangular reinforced concrete bridge columns. It is reasonable to use yielding effective stiffness of columns in seismic bridge design, especially in case that plastic hinges form at the bridge columns. In this study, the material nonlinear analysis was conducted for 3, 240 column sections of which variables were the concrete compressive stress, the steel yielding stress, the longitudinal steel location parameter, the longitudinal steel ratio, the axial load level, and the diameter of section. Based on the analytical results, an effective stiffness including two variables(longitudinal steel ratio and axial load ratio) was proposed by regression analyses, and it is compared with test results and the proposed equation for yielding effective stiffness of circular bridge columns.

  • PDF

Material distribution optimization of 2D heterogeneous cylinder under thermo-mechanical loading

  • Asgari, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.703-723
    • /
    • 2015
  • In this paper optimization of volume fraction distribution in a thick hollow cylinder with finite length made of two-dimensional functionally graded material (2D-FGM) and subjected to steady state thermal and mechanical loadings is considered. The finite element method with graded material properties within each element (graded finite elements) is used to model the structure. Volume fractions of constituent materials on a finite number of design points are taken as design variables and the volume fractions at any arbitrary point in the cylinder are obtained via cubic spline interpolation functions. The objective function selected as having the normalized effective stress equal to one at all points that leads to a uniform stress distribution in the structure. Genetic Algorithm jointed with interior penalty-function method for implementing constraints is effectively employed to find the global solution of the optimization problem. Obtained results indicates that by using the uniform distribution of normalized effective stress as objective function, considerably more efficient usage of materials can be achieved compared with the power law volume fraction distribution. Also considering uniform distribution of safety factor as design criteria instead of minimizing peak effective stress affects remarkably the optimum volume fractions.

The Spatial and temporal distributions of NET(Net Effective Temperature) with a Function of Temperature, Humidity and Wind Speed in Korea (한반도의 날씨 스트레스 지수 NET(Net Effective Temperature) 분포의 특성)

  • 허인혜;최영은;권원태
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.1
    • /
    • pp.13-26
    • /
    • 2004
  • This paper examined the possibility of NET application for a relative weather stress index in Korea. The characteristic of NET distribution used temperature, relative humidity, wind speed which forecasting at Korean Meteorological Administration were analyzed. Regional critical values of daily maximum NET of stress index for summer resembled the distribution of daily maximum temperature because were not impacted wind and humidity but temperature. Regional critical values of daily minimum NET of stress index for winter distributed variously compared with summer. The highland region and the northern region of Seoul were impacted of low temperature and coastal region which strong wind. The occurrences of stressful days did not vary in summer, but obviously increased in winter after mid-1990s.

Structural Design for Key Dimensions of Printed Circuit Heat Exchanger (인쇄기판형열교환기 핵심치수 구조설계)

  • Kim, Yong Wan;Kang, Ji Ho;Sah, In Jin;Kim, Eung Seon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.1
    • /
    • pp.24-31
    • /
    • 2018
  • The mechanical design procedure is studied for the PCHE(printed circuit heat exchanger) with electrochemical etched flow channels. The effective heat transfer plates of PCHE are assembled by diffusion bonding to make a module. PCHE is widely used for industrial applications due to its compactness, cost efficiency, and serviceability at high pressure and/or temperature conditions. The limitations and technical barriers of PCHE are investigated for application to nuclear components. Rules for design and fabrication of PCHE are specified in ASME Section VIII but not in ASME Section III of nuclear components. Therefore, the calculation procedure of key dimensions of PCHE is defined based on ASME section VIII. The effective heat transfer region of PCHE is defined by several key dimensions such as the flow channel radius, edge width, wall thickness, and ridge width. The mechanical design procedure of key dimensions was incorporated into a program for easy use in the PCHE design. The effect of assumptions used in the key dimension calculation on stress values is numerically investigated. A comparative analysis is done by comparing finite element analysis results for the semi-circular flow channels with the formula based sizing calculation assuming rectangular cross sections.

A Study on Evaluation of Crack Opening Point in High Strength Aluminum Alloy(I) (고강도 알미늄 합금재에 있어서 크랙열림점 평가에 관한 연구(I))

  • 최병기
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.100-106
    • /
    • 1993
  • This paper aims to synthesize the research on fatigue fracture mechanisms of high strength aluminum alloys which are widely used in motorcars or airplanes to prevent accidents. To measure the data of crack opening ratio, the same materials and method are used for evaluating the fatigue crack propagation rate as an effective stress intensity factor. But, many researchers have brought different results. An exact crack opening ratio was, therefore, proposed for getting a more accurate fatigue crack propagation rate. The main conclusions obtained are as follows. (1) As a result of the fatigue test, the value of the crack opening ratio is the same regardless of the stress ratio. (2) The value of crack opening ratio is different according to the measuring point. After measuring the crack propagation rate by using an effective stress intensity factor, the crack opening ratio value measured at the crack mouth by a clip gage, or measured rear of the specimen by a strain gage is more accurate than that by any other measuring test.

  • PDF

Analytical Study on Strength Resistance of Steel Beams with Stiffened Ends by Reinforced Concrete -difference of behavior with fixing plate- (복합보의 내력성능에 관한 연구 -정착판의 설치에 의한 거동의 차이-)

  • Kim, Seong Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.681-690
    • /
    • 2000
  • Recently, a long span is often required for the spacious building. Therefore the increase of stiffness is necessary to prevent floor vibration and control deformation of the building under earthquake and wind loads. For this purpose, steel beams with stiffened ends by reinforced concrete are effective. To realize such an effective reinforcement method, the smoothening of bending and shear stress transmission at the boundaries between middle-part of the steel beam and both end-parts of the steel beam with stiffened ends by reinforced concrete is required. Therefore, the fixed plate was installed at the boundary with the view of transferring the stress smoothly. This paper evaluates the method of effective transmission of bending and shear stress through the numerical analysis that is based on advanced experimental tests.

  • PDF

Consolidation Characteristics at the Constant Rate of Strain(CRS) Test (일정변형률(CRS) 시험에서의 압밀특성)

  • Lee, Dal-Won;Kim, Si-Jung
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.491-499
    • /
    • 2010
  • This study was carried out to investigate the consolidation characteristics of the remolded clay by the oedometer and the constant rate of strain(CRS) consolidation tests. As the rate of strain increases, the settlement rapidly decreased. As the ratio of the sand in the specimen increases, its effect on the rate of strain to the settlement was reduced. As the effective stress increased, the void ratio decreased, while the rate of strain increased, it did not show a clear variation. The reduction of the void ratio was shown to be less than the oedometer test. The coefficient of vertical consolidation with effective stress showed very large variation around preconsolidation stress, but the rate of strain did not provide significant effects. The rate of strain with effective stress gradually decreased at all tests and mixed ratio of sand. The rate of strain at the constant rate of strain tests showed smaller than in the oedometer test. The coefficient of consolidation at the constant rate of strain tests showed much more increase than in the oedometer test. The ratio of the vertical coefficient of consolidation by the odometer and the constant rate of strain tests showed a large difference according to various tests method and mixing ratio. Therefore, it is recommended that careful attention should be paid to designing the soft ground improvement.