• Title/Summary/Keyword: Effective Particle Diameter

Search Result 97, Processing Time 0.022 seconds

A Three-Dimensional Particle Focusing Channel Using the Positive Dielectrophoresis (pDEP) Guided by a Dielectric Structure Between Two Planar Electrodes (두 평면 전극 사이의 절연체 구조물에 의해 유도되는 양의 유전영동을 이용한 삼차원 입자 정렬기)

  • Chu, Hyun-Jung;Doh, Il;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.3
    • /
    • pp.261-264
    • /
    • 2009
  • We present a three-dimensional (3D) particle focusing channel using the positive dielectrophoresis (pDEP) guided by a dielectric structure between two planar electrodes. The dielectric structure between two planar electrodes induces the maximum electric field at the center of the microchannel, and particles are focused to the center of the microchannel by pDEP as they flow from the single sample injection port. Compared to the previous 3D particle focusing methods, the present device achieves the simple and effective particle focusing function without any additional fluidic ports and top electrodes. In the experimental study, approximately 90 % focusing efficiency were achieved within the focusing length of 2mm, on both x-z plane (top-view) and y-z plane (side-view) for $2{\mu}m$-diameter polystyrene (PS) bead at the applied voltage over 15 Vp-p (square wave) and at the flow rate below 0.01 ${\mu}l$/min. The present 3D particle focusing channel results in a simple particle focusing method suitable for use in integrated microbiochemical analysis system.

Experimental study on single- and two-phase flow behaviors within porous particle beds

  • Jong Seok Oh;Sang Mo An;Hwan Yeol Kim;Dong Eok Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1105-1117
    • /
    • 2023
  • In this study, the pressure drop behavior of single- and two-phase flows of air and water through the porous beds filled with uniform and non-uniform sized spherical particles was examined. The pressure drop data in the single-phase flow experiments for the uniform particle beds agreed well with the original Ergun correlation. The results from the two-phase flow experiments were analyzed using numerical results based on three types of previous models. In the experiments for the uniform particle beds, the data on the two-phase pressure drop clearly showed the effect of the flow regime transition with a variation in the gas flow rate under stagnant liquid condition. The numerical analyses indicated that the predictability of the previous models for the experimental data relied mainly on the sub-models of the flow regime transitions and interfacial drag. In the experiments for the non-uniform particle beds, the two-phase pressure loss could be predicted well with numerical calculations based on the effective particle diameter. However, the previous models failed to accurately predict the counter-current flooding limit observed in the experiments. Finally, we propose a relation of falling liquid velocity into the particle bed by gravity to appropriately simulate the CCFL phenomenon.

Study on Shape Distribution of Wear Particles with Histogram (히스토그램에 의한 마멸분의 형태분포에 관한 연구)

  • Cho, Yon-Sang;Moon, Sung-Dong;Park, Heung-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.963-969
    • /
    • 2008
  • The wear particles are relative to the failure and the life of machine elements directly. But it is not laid down to calculate shape parameters of wear particle. To analyze a variation of distributed characteristics of wear particles on moving conditions, its shape parameters such as diameter and roundness were calculated the quantitative values by digital image processing, and had to be defined the effective method of using those data. Up to the present, the shape parameters have been used simply into the average values. But these values are not effective to analyze a variation of distributed characteristics of occurred wear particles on moving conditions. In this study, the relative histograms of shape parameters of wear particles were used for the purpose of analyzing the distribution of wear particles in various conditions. The results showed that the relative histogram of shape parameters can be effectively represented to study a wear mechanism.

Change in the Characteristics of Particle Separation and Particle Size Distribution of Weathered Granite Soil from the Yecheon Area (Eastern South Korea) after Water Washing (물 세척한 예천지역 화강풍화토의 입자분리와 입도분포 변화 특성)

  • Kim, Suk-Joo
    • The Journal of Engineering Geology
    • /
    • v.32 no.2
    • /
    • pp.241-255
    • /
    • 2022
  • In this study, sieve analysis testing was performed on weathered granite soil from Yecheon (eastern South Korea) before and after water washing in accordance with the sieve analysis regulations of KS F 2302. The changes in particle separation and particle size distribution after washing with water were analyzed. Image analysis using an optical microscope revealed that soil particles were separated into smaller particles by water washing. The change in the particle size distribution curve was assessed using five index values. The increase in the fine particle fraction (<0.075 mm) was 13.67%, the increase in the 0.075-0.25 mm fraction was 19.44%, and the mean particle diameter (D50) decreased by 0.663 mm. In addition, the maximum passage width (BM) of the particle size distribution curve increased by 21.08% for the #30 sieve, and the moving area (A) of the particle size distribution curve was 69.28%·mm. These results suggest that washing with water is an effective way to prevent underestimation of the fine particle content in soil.

A cost-effective method to prepare size-controlled nanoscale zero-valent iron for nitrate reduction

  • Ruiz-Torres, Claudio Adrian;Araujo-Martinez, Rene Fernando;Martinez-Castanon, Gabriel Alejandro;Morales-Sanchez, J. Elpidio;Lee, Tae-Jin;Shin, Hyun-Sang;Hwang, Yuhoon;Hurtado-Macias, Abel;Ruiz, Facundo
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.463-473
    • /
    • 2019
  • Nanoscale zero-valent iron (nZVI) has proved to be an effective tool in applied environmental nanotechnology, where the decreased particle diameter provides a drastic change in the properties and efficiency of nanomaterials used in water purification. However, the agglomeration and colloidal instability represent a problematic and a remarkable reduction in nZVI reactivity. In view of that, this study reports a simple and cost-effective new strategy for ultra-small (< 7.5%) distributed functionalized nZVI-EG (1-9 nm), with high colloidal stability and reduction capacity. These were obtained without inert conditions, using a simple, economical synthesis methodology employing two stabilization mechanisms based on the use of non-aqueous solvent (methanol) and ethylene glycol (EG) as a stabilizer. The information from UV-Vis absorption spectroscopy and Fourier transform infrared spectroscopy suggests iron ion coordination by interaction with methanol molecules. Subsequently, after nZVI formation, particle-surface modification occurs by the addition of the EG. Size distribution analysis shows an average diameter of 4.23 nm and the predominance (> 90%) of particles with sizes < 6.10 nm. Evaluation of the stability of functionalized nZVI by sedimentation test and a dynamic light-scattering technique, demonstrated very high colloidal stability. The ultra-small particles displayed a rapid and high nitrate removal capacity from water.

Investigation of flow-regime characteristics in a sloshing pool with mixed-size solid particles

  • Cheng, Songbai;Jin, Wenhui;Qin, Yitong;Zeng, Xiangchu;Wen, Junlang
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.925-936
    • /
    • 2020
  • To ascertain the characteristics of pool sloshing behavior that might be encountered during a core disruptive accident of sodium-cooled fast reactors, in our earlier work several series of experiments were conducted under various scenarios including the condition with mono-sized solid particles. It is found that under the particle-bed condition, three typical flow regimes (namely the bubble-impulsion dominant regime, the transitional regime and the bed-inertia dominant regime) could be identified and a flow-regime model (base model) has been even successfully established to estimate the regime transition. In this study, aimed to further understand this behavior at more realistic particle-bed conditions, a series of simulated experiments is newly carried out using mixed-size particles. Through analyses, it is verified that for present scenario, by applying the area mean diameter, our previously-developed base model can provide the most appropriate predictive results among the various effective diameters. To predict the regime transition with a form of extension scheme, a correction factor which is based on the volume-mean diameter and the degree of convergence in particle-size distribution is suggested and validated. The conducted analyses in this work also indicate that under certain conditions, the potential separation between different particle components might exist during the sloshing process.

Improvement of a High-volume Aerosol Particle Sampler for Collecting Submicron Particles through the Combined Use of a Cyclone with a Smoothened Inner Wall and a Circular Cone Attachment

  • Okuda, Tomoaki;Isobe, Ryoma
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.131-137
    • /
    • 2017
  • A cyclone is an effective tool to facilitate the collection of aerosol particles without using filters, and in cell exposure studies is able to collect a sufficient amount of aerosol particles to evaluate their adverse health effect. In this study, we examined two different methods to improve the aerosol particle collection efficiency of a cyclone. The individual and combined effects of reducing the surface roughness of the inner wall of the cyclone and of using a circular cone attachment were tested. The collection efficiency of particles of diameter $0.2{\mu}m$ was improved by approximately 10% when using a cyclone with a smoothened inner wall (average roughness $Ra=0.08{\mu}m$) compared with the original cyclone ($Ra=5.1{\mu}m$). A circular cone attachment placed between the bottom section of the cyclone and the top section of a collection bottle, resulted in improved collection of smaller particles without the attachment. The 50% cutoff diameter of the modified cyclone (combined use of smoothened inner wall and attachment) was $0.23{\mu}m$ compared to $0.28{\mu}m$ in the original model. The combined use of these two techniques resulted in improved collection efficiency of aerosol particles.

Characterization of the grown - in defects in the large diameter silicon crystal grown by Czochralski method (대구경 규소 Czochralski 단결정 속의 결정 결함 규명)

  • 이보영;김영관
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.1
    • /
    • pp.11-18
    • /
    • 1996
  • Grown-in defects like OISF and FPD in the large diameter(> 8 inch)of silicon crystal are characterized. It was revealed that the presence of the ring-patterned OISF would deterorate the minority life time of the silicon crystal. Through the cooling experiment from the $1250^{\circ}C$, the nucleation of the OISF was confirmed to follow the homogeneous nucleation and growth process. In addition to OISF nucleus, crystal originated particle, which was known to be closely related with FPD (Flow Pattern Defects), was found to depend on the pulling rate of the crystal. Combination of the lower rate of the pulling and the faster cooling near the $950^{\circ}C$ is proposed to be effective method in reducing the generation of these grown-in defects.

  • PDF

Electrostatic Charging Measurement and PVC Separation of Triboeletrostatically Charged Plastic Particles using a Fluidized Bed Tribocharger

  • Shin, Jin-Hyouk;Lee, Jae-Keun
    • Journal of ILASS-Korea
    • /
    • v.7 no.2
    • /
    • pp.7-15
    • /
    • 2002
  • A particle flow visualization, electrostatic charging measurement and separation of triboelectrically charged particles in the external electric field by a fluidized bed tribocharger are conducted for the removal of PVC particles from mixed waste plastics. The laboratory-scale triboelectrostatic separation system consists of the fluidized bed tribocharger, a separation chamber, a collection chamber and a controller. PVC and PET particles can be imparted negative and positive surface charges respectively due to the difference of triboelectric charging series between particles and particles in the fluidized bed tribocharger, and can be separated by passing them through an external electric field. To visualize these charged particles, He-Ne laser is used with cylindrical lenses to generate a sheet beam. In the charging measurement, the particle motion analysis system (PMAS), capable of determining particle velocity and diameter. is used to non-intrusively measure particle behavior in high strength electric field. The average charge-to-mass ratios of PVC and PET particles are $1.4\;and\;1.2{\mu}C/kg$, respectively. The highly concentrated PVC (91.9%) can be recovered with a yield of about 96.1% from the mixture of PVC and PET materials for a single-stage processing. The triboelectrostatic separation system using the fluidized tribocharger shows the potential to be an effective method for removing PVC from mixed plastics for waste plastic recycling.

  • PDF

Mechanistic Model of Dryout in a Heat-Generating Porous Medium

  • Kim, Seong-Ho;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.537-542
    • /
    • 1996
  • In the present work the influence of various physical parameters on the two-phase flow behavior in a self-heated porous medium has been studied using a numerical model, that is, the effects of heat generation rate, of porosity, of particle size, and of system pressure on the dryout process. To analyze the effect of these parameters, the variation of both liquid volumetric fraction and liquid axial velocity is evaluated at the steady state or at the onset of a first boiled-out region. The analysis of computational results indicate that a qualitative tendency exists between the parameters such as heat generation rate, porosity, effective particle diameter and the temporal development of the liquid volumetric fraction field up to dryout. In addition to these parameters, a variation of fluid properties such as phase density, phase viscosity due to a change of system pressure can be used for gaining insight into the nature of two-phase flow behavior up to dryout.

  • PDF