• Title/Summary/Keyword: Effective Mass

Search Result 2,691, Processing Time 0.031 seconds

Comparison between Source-induced Dissociation and Collision-induced Dissociation of Ampicillin, Chloramphenicol, Ciprofloxacin, and Oxytetracycline via Mass Spectrometry

  • Lee, Seung Ha;Choi, Dal Woong
    • Toxicological Research
    • /
    • v.29 no.2
    • /
    • pp.107-114
    • /
    • 2013
  • Mass spectrometry (MS) is a very powerful instrument that can be used to analyze a wide range of materials such as proteins, peptides, DNA, drugs, and polymers. The process typically involves either chemical or electron (impact) ionization of the analyte. The resulting charged species or fragment is subsequently identified by the detector. Usually, single mass uses source-induced dissociation (SID), whereas mass/mass uses collision-induced dissociation (CID) to analyze the chemical fragmentations Each technique has its own advantages and disadvantages. While CID is most effective for the analysis of pure substances, multiple-step MS is a powerful technique to get structural data. Analysis of veterinary drugs ampicillin, chloramphenicol, ciprofloxacin, and oxytetracycline serves to highlight the slight differences between SID and CID. For example, minor differences were observed between ciprofloxacin and oxytetracycline via SID or CID. However, distinct fragmentation patterns were observed for ampicllin depending on the analysis method. Both SID and CID showed similar fragmentation spectra but different signal intensities for chloramphenicol. There are several factors that can influence the fragmentation spectra, such as the collision energy, major precursor ion, electrospray mode (positive or negative), and sample homogeneity. Therefore, one must select a fragmentation method on an empirical and case-by-case basis.

The Application of Resettable Device to Semi-Active Tuned Mass Damper Building Systems for Multi-level Seismic Hazard Mitigation

  • Chey, Min-Ho
    • Architectural research
    • /
    • v.14 no.3
    • /
    • pp.99-108
    • /
    • 2012
  • An innovative multi-story Semi-Active Tuned Mass Damper (SATMD) building system is proposed to control seismic response of existing structures. The application of adding new stories as large tuned mass and semi-active (SA) resettable actuators as central features of the control scheme is derived. For the effective control of the structures, the optimal tuning parameters are considered for the large mass ratio, for which a previously proposed equation is used and the practical optimal stiffness is allocated to the actuator stiffness and rubber bearing stiffness. A two-degree-of freedom (2-DOF) model is adopted to verify the principal efficiency of the suggested structural control concept. The simulations for this study utilizes the three ground motions, from SAC project, having probability of exceedance of 50% in 50 years, 10% in 50 years, and 2% in 50 years for the Los Angeles region. 12-story moment resisting frames, which are modified as '12+2' and '12+4' story structures, are investigated to assess the viability and effectiveness of the system that aims to reduce the response of the buildings to earthquakes. The control ability of the SATMD scheme is compared to that of an uncontrolled and an ideal Passive Tuned Mass Damper (PTMD) building system. From the performance results of suggested '12+2' and '12+4' story retrofitting case studies, SATMD systems shows significant promise for application of structural control where extra stories might be added.

Experimental und Numerical Sensitivity Analyses on Push Pull Tracer Tests

  • Hwang, Hyeon-Tae;Lee, Gang-Geun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.312-316
    • /
    • 2004
  • Single-well tracer tests, especially push pull tracer tests, are more effective to estimate hydraulic parameters and microbial metabolic activities in terms of duration and cost compared to multi-well tracer tests. However, there are some drawbacks in accuracy, complicated data analysis and uniqueness. These shortages are thought to be derived from the applied conditions which affect mass recovery curve and breakthrough curve. Factors such as extraction rate, resting period, hydraulic conductivity and hydraulic gradient are considered as the major factors determining the mass recovery rate and shape of the breakthrough curve. The results of the sensitivity analysis are summarized as follows: 1) the significant change in concentration of breakthrough curve is obtained when the extraction rate increases. This effect would also be much higher if the hydraulic conductivity is lower; 2) the mass recovery rate decreases with the increase of resting time, and the difference of mass recovery rates for different resting times is inversely proportional to the hydraulic conductivity; 3) the sensitivity values decrease with time. The hydraulic conductivity affects not only the early period, but the later period of the breakthrough curves; 4) The influence of the hydraulic gradient on the breakthrough curves is greater at earlier stage than at later stage. The mass recovery rate is inversely proportional to the hydraulic gradient.

  • PDF

The Effects on the Pulmonary Function and Body Mass Index of 20's Men Obesity after Treadmill Exercise (트레드밀 훈련이 20대 남성 비만인의 폐기능 및 체질량지수에 미치는 영향)

  • Seo, Kyochul;Kim, Hyeonae
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.4 no.4
    • /
    • pp.13-19
    • /
    • 2016
  • PURPOSE : The purpose of this study was to determine whether tredmill exercise increases pulmonary function and decreases body mass index of the 20s obesity. METHOD : Thirty obesity in their 20s were randomly assigned to on experimental group (n=15) or control group (n=15). Over the course of four weeks, the experimental group participated in tredmill exercise for 30 minutes three times per week and the control group participated in auto-med exercise for 30 minutes three times per week. Subjects were assessed pre-test and post-test by measurement of pulmonary function (tidal volume, inspiration reserve volume, expiratory reserve volume, vital capacity) and body mass index. RESULT : Our findings show that the experimental group had significant difference in expiratory reserve volume and vital capacity and body mass index (p<.05). In the comparison of the two groups, the experimental group had higher pulmonary function and lower body mass index than the control group. CONCLUSION : In this study, the experimental group showed greater improvement in pulmonary function than the control group, which indicates that the tredmill exercise is effective at increasing the pulmonary function and body mass index 20s obesity.

Noise Reduction Algorithm For The Detection of Fine Ion Signals in Residual Gas Analyzer (잔류가스분석기의 질량 스펙트럼 검출 성능 향상을 위한 잡음제거 알고리즘)

  • Heo, Gyeongyong;Choi, Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.102-107
    • /
    • 2019
  • This paper proposes a method to improve the mass spectral detection performance of the residual gas analyzer. By improving the mode estimation method for setting the threshold value and improving the additive noise elimination method, it is possible to detect mass spectrums having low peak values of the threshold level difficult to distinguish from noise. Ion signal blocks for each mass index with noise removed by the improved method are effective for eliminating invalid ion signals based on the linear and quadratic fittings. The mass spectrum can be obtained from the quadratic fitted curves for the reconstructed ion signal block using only the valid ion signals. In addition, the resolution of the mass spectrum can be improved by correcting the error caused by the shift of the spectral peak position. To verify the performance of the proposed method, computer simulations were performed using real ion signals obtained from the residual gas analysis system under development. The simulation results show that the proposed method is valid.

Impact parameter prediction of a simulated metallic loose part using convolutional neural network

  • Moon, Seongin;Han, Seongjin;Kang, To;Han, Soonwoo;Kim, Kyungmo;Yu, Yongkyun;Eom, Joseph
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1199-1209
    • /
    • 2021
  • The detection of unexpected loose parts in the primary coolant system in a nuclear power plant remains an extremely important issue. It is essential to develop a methodology for the localization and mass estimation of loose parts owing to the high prediction error of conventional methods. An effective approach is presented for the localization and mass estimation of a loose part using machine-learning and deep-learning algorithms. First, a methodology was developed to estimate both the impact location and the mass of a loose part at the same times in a real structure in which geometric changes exist. Second, an impact database was constructed through a series of impact finite-element analyses (FEAs). Then, impact parameter prediction modes were generated for localization and mass estimation of a simulated metallic loose part using machine-learning algorithms (artificial neural network, Gaussian process, and support vector machine) and a deep-learning algorithm (convolutional neural network). The usefulness of the methodology was validated through blind tests, and the noise effect of the training data was also investigated. The high performance obtained in this study shows that the proposed methodology using an FEA-based database and deep learning is useful for localization and mass estimation of loose parts on site.

Performance of double-tuned mass dampers in controlling structural vibrations

  • Mohammed Fasil;R. Sajeeb;Nizar A. Assi;Muhammad K. Rahman
    • Earthquakes and Structures
    • /
    • v.24 no.1
    • /
    • pp.21-36
    • /
    • 2023
  • Structural vibrations generated by earthquakes and wind loads can be controlled by varying the structural parameters such as mass, stiffness, damping ratio, and geometry and providing a certain amount of passive or active reaction forces. A Double-Tuned Mass Dampers (DTMDs) system, which is simple and more effective than the conventional single tuned mass damper (TMD) system for vibration mitigation is presented. Two TMDs tuned to the first two natural frequencies were used to control vibrations. Experimental investigations were carried out on a three degrees-of-freedom frame model to investigate the effectiveness of DTMDs systems in controlling displacements, accelerations, and base shear. Numerical models were developed and validated against the experimental results. The validation showed a good match between the experimental and numerical results. The validated model was employed to investigate the behavior of a five degrees-of-freedom shear building structure, wherein mass dampers with different mass ratios were considered. The effectiveness of the DTMDs system was investigated for harmonic, seismic, and white noise base excitations. The proposed system was capable of significantly reducing the story displacements, accelerations, and base shears at the first and second natural frequencies, as compared to conventional single TMD.

Seismic response control of irregular asymmetric structure with voided slabs by distributed tuned rotary mass damper devices

  • Shujin Li;Irakoze Jean Paula;Ling Mao
    • Earthquakes and Structures
    • /
    • v.25 no.6
    • /
    • pp.455-467
    • /
    • 2023
  • This study focuses on demonstrating the effectiveness of vibration control of tuned rotary mass damper (TRMD) for reducing the bidirectional and torsional response of the irregular asymmetric structure with voided slabs under earthquake excitations. The TRMD arranged in plane of one-story eccentric structure is proposed as a distributed tuned rotary mass damper (DTRMD) system. Lagrange's equation is used to derive the equations of motion of the controlled system. The optimum position and number of TRMD are numerically investigated under harmonic excitation and the control effects of different distributions are discussed. Furthermore, a shaking table test is conducted under different excitation cases, including free vibration, forced vibration and seismic wave to investigate the absorption performance of the device. The numerical simulations of different distributions of the TRMDs show that the DTRMDs are more effective in reduction of the displacement response of the asymmetric structure under the same mass ratio, even when the degree of eccentricity becomes large. However, with small degree of eccentricity, the unreasonable asymmetrical arrangement may cause the increase of the peak value of the rotational angular displacement. Finally, the experimental investigations exhibit similar results of translational displacement of the structure. It is concluded that the vibration of the irregular asymmetric structure can be controlled more economically and effectively by reducing the mass ratio through reducing the quantity of TRMDs at the high stiffness end.

Analysis of the Radiation Pattern in Relation to the Head Mass Shape Applicable to a Tonpilz Transducer (Tonpilz 트랜스듀서에 적용 가능한 전면추 형상에 따른 방사 패턴 해석)

  • Kim, Hoe-Yong;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.7
    • /
    • pp.422-430
    • /
    • 2010
  • The radiation property of a Tonpilz transducer is influenced by the structural variables of the transducer. In this study, with respect to a single mode Tonpilz transducer, the radiation patterns were calculated for different head mass geometries of the same effective radiation area. The shapes of the head mass analyzed were the most popular circular, regular triangular, square, regular hexagonal and regular octagonal types, and radiation pattern equations were derived for each of the head mass shapes. Based on the derived equations, radiation patterns in accordance with the shape and size of the head mass were calculated and the results were compared with each other. Validity of the calculation results were confirmed by means of finite element analysis.

An analytical model to decompose mass transfer and chemical process contributions to molecular iodine release from aqueous phase under severe accident conditions

  • Giedre Zablackaite;Hiroyuki Shiotsu;Kentaro Kido;Tomoyuki Sugiyama
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.536-545
    • /
    • 2024
  • Radioactive iodine is a representative fission product to be quantified for the safety assessment of nuclear facilities. In integral severe accident analysis codes, the iodine behavior is usually described by a multi-physical model of iodine chemistry in aqueous phase under radiation field and mass transfer through gas-liquid interface. The focus of studies on iodine source term evaluations using the combination approach is usually put on the chemical aspect, but each contribution to the iodine amount released to the environment has not been decomposed so far. In this study, we attempted the decomposition by revising the two-film theory of molecular-iodine mass transfer. The model involves an effective overall mass transfer coefficient to consider the iodine chemistry. The decomposition was performed by regarding the coefficient as a product of two functions of pH and the overall mass transfer coefficient for molecular iodine. The procedure was applied to the EPICUR experiment and suppression chamber in BWR.