• Title/Summary/Keyword: Effective Conductivity

Search Result 710, Processing Time 0.031 seconds

A New Mechanism for Enhanced Beat Transport of Nanofluid (나노유체의 열전도도 향상에 관한 새로운 메커니즘)

  • Lee Dong-Geun;Kim Jae-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.560-567
    • /
    • 2006
  • Although various conjectures have been proposed to explain abnormal increase in thermal conductivity of nanofluids, the detailed mechanism could not be understood and explained yet. The main reason is primarily due to the lack of knowledge on the most fundamental factor governing the mechanisms such as Brownian motion, liquid layering, phonon transport, surface chemical effects and agglomeration. By applying surface complexation model for the measurement data of hydrodynamic size, zeta potential, and thermal conductivity, we have shown that sulfate charge state is mainly responsible for the increase in the present condition and may be the factor incorporating all the mechanisms as well. Moreover, we propose a new model including concepts of fractal and interfacial layer. The properties such as thickness and thermal conductivity of the layer are estimated from the surface charge states and the concept of electrical double layer. With this, we could demonstrate the pH dependences of the layer properties and eventually of the effective thermal conductivity of the nanofluid.

Effect of Density-of-States Effective Mass on Transport Properties of Two Converging Valence Bands

  • Kim, Hyun-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.3
    • /
    • pp.325-330
    • /
    • 2019
  • Band convergence is known to be effective in improving thermoelectric performance by increasing the Seebeck coefficient without significantly reducing electrical conductivity. Decoupling of the Seebeck coefficient and electrical conductivity in converged bands is the key requirement. Yet, the degree of decoupling depends on the band parameters of the converging bands. Herein, we report theoretical transport properties of two valence bands as their energy difference changes from 0.25 eV to 0 eV. In order to demonstrate the effect of band parameters in transport, we first conducted calculations for the case where the two bands have the same parameters. Then, we conducted the same calculation by doubling the density-of-states effective mass of one valence band. Given that there are two bands, each band's effective mass was doubled one at a time while the other band's effective mass remained constant. We found that the decoupling was strongest when the bands participating in convergence had the same band parameters.

Derivation of the Effective Hydraulic Conductivity in Stratified Layered Soil Using Stochastic Approach (추계학적 방법을 이용한 성층화된 흙에서 유효 비포화투수계수의 유도)

  • Yun, Seong-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.699-708
    • /
    • 1997
  • The effective unsaturated hydraulic conductivity in stratified soils is evaluated using a three-dimensional stochastic approach. Because of the disparity of the correlation scales in a stratified soil, the general stochastic equations are simplified. This allows analytical evaluation of generic expressions for the effective hydraulic conductivities. Simple asymptotic expressions, valid at particular ranges(wetting front, drying condition, wetting condition) of the mean flow characteristics, are also derived. An example of applying the derived theoretical result to a imaginaryl clay soil is presented. It reveals found that the effective unsaturated hydraulic conductivity showed large-scale hysteresis. Such large-scale hysteresis was produced by the spatial variability of hydraulic soil properties rather than hysteresis of the local parameters. In addition the results show that the effective hydraulic conductivities were larger in the case of accommodating heterogeneity of soil preperties rather than neglecting heterogeneity of soil properties.

  • PDF

Estimation of the Effective Hydraulic Conductivity in the Granite Area as an Equivalent Continuum Medium (등연속체매질로서의 화강암지역의 유효수리전도도 산출)

  • 김경수;김천수;배대석
    • The Journal of Engineering Geology
    • /
    • v.12 no.3
    • /
    • pp.319-332
    • /
    • 2002
  • This study is focused on the characterization of an effective hydraulic conductivity in each hydrogeologic unit assumed as an equivalent continuum medium in the granitic area. Four boreholes of 3" diameter were installed and a Multi-packer system was facilitated in the selected borehole. Various in-situ tests including the fracture logging, constant injection and fall-off tests, slug and pulse tests were carried out. A hydrogeologic unit was defined into the upper and lower zones based on the variation of fracture properties and hydraulic conductivities. The difference of the result obtained by the various hydraulic tests and the effective characterization techniques on rock mass permeability are also discussed. The effective hydraulic conductivity of the upper unit was measured by two times(5.27E-10 m/s~7.57E-10 m/s) that of the lower unit(2.45E-10 m/s~6.81E-10 m/s)through the constant injection and fall-off tests.

Measurement of the Shear Rate-Dependent Thermal Conductivity for Suspension with Microparticles (미립자를 포함한 현탁액의 전단율에 의존적인 열전도율 측정)

  • Lee, Sung-Hyuk;Shin, Sehyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.8
    • /
    • pp.1141-1151
    • /
    • 1998
  • An effective thermal conductivity measurement for suspensions of microparticles in oil mixture is conducted in order to evaluate the shear rate-dependence of the thermal conductivity of suspensions. Measurements are made for rotating Couette flows between two concentric cylinders. The rotating outer cylinder is immersed into a constant temperature water bath while the stationary inner cylinder is subject to a uniform heat fluff. Test fluids are made to be homogeneous suspensions, in which neutrally buoyant microparticles ($d=25{\sim}300{\mu}m$) are uniformly dispersed. The present measurements show strong shear-rate dependent thermal conductivities for the suspensions, which are higher than those at zero shear rate. The shear rate dependent thermal conductivity increases with the particle size and volume concentration.4 new model for shear rate-dependent thermal conductivity of microparticle suspensions is proposed; the correlation covers from zero shear rate value to asymptotic plateau value at moderately high shear rates.

Measuring Thermal Conductivity of Nanofluids and Heat Transfer Enhancement (나노유체의 열전도율 측정과 열전달 향상)

  • Lee, Shin-Pyo;Choi, Cheol;Oh, Je-Myung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.147-150
    • /
    • 2006
  • A new class of heat transfer fluid with higher thermal conductivity, called nanofluids has been developed by Dr. S. Choi about decade ago. Many exciting experimental and theoretical results have been reported worldwide to predict the thermal conductivity enhancement of nanofluids, however, they sometimes show excessive large discrepancies between each other. This kind of disagreements in thermal conductivity data is partly ascribable to the accuracy of the measuring apparatus, that is, mostly used THM(transient hot-wire method). New thermal conductivity measuring method whose principle is different from that of conventional THM is proposed in this article and measurements and uncertainty analysis were made for the three nanofluid samples with different particle concentration of pure, 2% and 4% of AlN nanofluids.

  • PDF

Hydraulic Conductivity of Bentonite-Sand Mixture for a Potential Backfill Material for a High-level Radioactive Waste Repository

  • Cho, Won-Jin;Lee, Jae-Owan;Kang, Chul-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.495-503
    • /
    • 2000
  • The hydraulic conductivities in the bentonite-sand mixtures with high density were measured, and the effects of sand content and dry density on the hydraulic conductivity were investigated. The hydraulic conductivities of the bentonite-sand mixtures with a dry density of 1.6 Mg/㎥ and 1.8 Mg/㎥ are less than 10$^{-11}$ m/s when the sand content is not higher than 70 wt%. However at the sand content of 90 wt%, the hydraulic conductivity increases rapidly At the same dry density, the logarithm of hydraulic conductivity increases linearly with increasing sand content. The hydraulic conductivity of the bentonite-sand mixture can be explained by the concept of effective clay dry density, and using this concept, the hydraulic conductivities for the mixtures with various sand contents and dry densities can be estimated.

  • PDF

Characterization of fracture network with geometrical properties

  • 지성훈;박영진;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.106-109
    • /
    • 2002
  • In order to delineate the flow system of fractured hard rock aquifer, numerical experiments are conducted and the results are analyzed with Mote Carlo simulation. The results show that the percolation threshold and the effective conductivity of a fracture network can be estimated with power law exponent (a) and fracture intensity. But the dependability of the estimated value relies on the percolation threshold, the system scale, and the characterization level.

  • PDF

A Study on the Thermal Behavior of Vertical Borehole Heat Exchanger with 1-Dimensional Model (1차원 모델에 의한 지중열교환기의 열거동 해석)

  • Lee, Se-Kyoun;Kim, Dae-Ki;Woo, Joung-Son;Park, Sang-Il
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.1
    • /
    • pp.97-104
    • /
    • 2005
  • A one-dimensional heat transfer model for the vertical borehole system is derived in this study to predict the thermal behavior of the system and surrounding soil. In this model the U-tube is replaced with one effective tube of effective diameter which is surrounded by concentric grout region. All thermal resistances of borehole are counted in the grout region with effective thermal conductivity of grout. Effective thermal conductivity of grout and sand are calculated through parameter estimation. The validity of this model is accomplished through comparison of the predicted temperature profiles of the model with experimental data.

A Study on Regional Distribution of the Ground Effective Thermal Conductivity (지중 유효 열전도도의 지역별 분포)

  • Kong, Hyoung Jin;Kwon, Soon-Ki;Ji, Seung Gyu
    • Transactions of the KSME C: Technology and Education
    • /
    • v.4 no.1
    • /
    • pp.43-47
    • /
    • 2016
  • Ground source heat pump(GSHP) systems is known as environmental friendly and energy saving. Especially a ground heat exchanger is an important unit that determines the thermal performance of a system and initial cost. In design phase of vertical GSHP system, it is recommended that the effective borehole thermal resistance, be determined from in-situ thermal response test. In this study, ground effective thermal conductivity was categorized by a region. As a result of the study, the ground thermal conductivity of national average was analyzed as 2.56 W/mK. The highest regional average of thermal conductivity is 2.68 W/mK in Seoul, and the lowest is 2.28 W/mK in Busan. Also, the thermal conductivity on the coast has been analyzed approximately 30% lower than the average.