최근 공동구 및 지하터널의 수요증가와 함께 수직구 굴착에 대한 연구의 필요성이 증가하고 있다. 공동구 연구단은 국토교통부 연구개발사업의 일환으로 '수직구 외주면 선행 굴착공법 및 장비'를 개발하였으며 현재 성능 검증 중에 있다. '수직구 외주면 선행 굴착공법'은 수직구 굴착 시 굴착면의 외주면을 먼저 굴착하고 굴착기 벽체를 관입시켜 연약지반의 히빙에 대한 지반의 안정성을 확보하는 공법이다. 이 연구에서는 원심모형실험을 통해 히빙을 모사하고 관내토의 유무에 따른 지반면의 히빙과 지반침하, 그리고 주변지반의 거동을 비교, 분석하였다. 분석 결과 관내토가 지반침하와 히빙의 발생을 충분히 억제하는 효과를 나타내는 것으로 파악되었으며, 수직구 외주면 선행 굴착공법이 히빙에 대한 지반의 안정성을 충분히 확보함을 확인할 수 있었다.
주열식(柱列式) 흙막이벽(壁)은 저진동(低振動), 저소음(低騷音)의 이점(利點)이 있고 주변지반(周邊地盤)이나 인접구조물(隣接構造物)에 미치는 악영향(惡影響)이 적은 이유로 인하여 굴착공사(工事)의 흙막이공(工)으로 많이 채택된다. 이러한 주열식(柱列式) 흙막이벽용(壁用) 말뚝의 합리적(合理的) 설계법(設計法)을 확립(確立)시킬 것을 목적(目的)으로 본논문(本論文)에서는 말뚝의 저항력(低抗力) 산정이론식(算定理論式)이 먼저 유도(誘導)된 후 말뚝설치간격비(設置間隔比)의 결정법(決定法)도 설정(設定)된다. 본(本) 저항력(抵抗力) 산정이론식(算定理論式)의 유도(誘導) 시(時)에는 말뚝 사이 지반(地盤) Arching 현상(現象)이 취급(取扱)되므로써, 지반(地盤) 특성(特性)과 말뚝의 설치상태(設置狀態)가 처음부터 합리적(合理的)으로 고려(考慮)된다. 한편, 본논문(本論文)에서 설정(設定)된 말뚝설치간격비(設置間隔比)의 결정법(決定法)에 의거하면, 말뚝의 설치간격(設置間隔)이 Peck의 안정수(安定數), 지반의 측압계수(側壓係數) 및 내부마찰각(內部摩擦角)으로부터 산정(算定)될 수 있다. 마지막으로 굴착깊이, 말뚝직경(直徑), 말뚝설치간격(設置間隔), 말뚝근입장(根入長) 및 말뚝강성(剛性)을 체계적(體系的)으로 선정(選定)할 수있는 설계법(設計法)이 제안(提案)된다.
본 연구에서는 지상구조물 건설을 위하여 흙막이 벽체를 이용하여 지하굴착이 이루어진 지역에 근접하여 새로운 지하공간이 신설될 때, 지하굴착과 흙막이 벽체간의 이격거리에 따른 흙막이 벽체에 작용하고 있던 토압의 변화 및 지표 침하 변화를 실험적으로 연구하였다. 지하공간 굴착 단계별로 흙막이 벽체의 토압 변화 및 지표 침하를 측정할 수 있는 길이 160 cm, 높이 120 cm의 모형 토조를 제작했다. 실험은 균일하게 조성된 사질토 지반에서 하부 지반에 변위를 가하고, 수직한 흙막이 벽체의 토압 변화 및 지표면 침하를 확인하는 방식으로 수행하였다. 모형실험은 인접한 지하공간 굴착에 따른 흙막이 벽체의 높이별 토압을 측정하기 위하여 흙막이 벽체를 모사하는 우측 벽체 10개 및 지하공간 굴착을 모사하는 하부 벽체 5개로 구성하고 하부벽체를 거동시킴으로서 지하굴착을 모사하였다. 실험 결과, 하부 1단 벽체의 거동 시에는 흙막이 벽체의 토압에 변화가 발생하였으나, 하부 3단의 경우는 지하 굴착이 흙막이 벽체와 충분히 이격되어 토압변화가 크게 발생하지 않았다. 하부 1단 벽체를 굴착한 결과, 우측 하단부 벽체 주변의 응력이 감소되고, 우측 중간부 벽체 주변으로 응력이 재분배되는 아칭현상을 증명할 수 있었다.
도심지 지상공간의 포화로 인한 지하공간 개발은 지속적으로 증가하고 있으며, 지하공간은 교통, 상하수도, 통신구, 전력구 및 각종 복합 문화 공간으로 활용되고 있다. 지하공간을 굴착하는 대표적인 방법으로 국내에서는 NATM (New Austrian Tunneling Method)과 같은 화약을 이용한 발파 공법이 주로 사용되어왔다. 하지만, 발파 공법은 터널 굴착 시 진동과 소음을 유발하기 때문에 굴착 인근 지역 주민들의 민원이 많이 발생한다. 최근 도심지 대심도 지하공간 굴착공사가 증가하고 있어 발파 진동과 소음 저감을 위한 근본적인 노력과 기술이 필요로 되고 있는 상황이다. 본 연구에서는 GTX-A 노선 일부구간의 현장 발파 진동 계측자료 및 지반조사자료와 설계자료를 활용하여 동일 발파, 터널조건에서 심도에 따른 발파 진동 변화를 수치해석을 통해 예측하고자 한다. 또한 발파 위치 직상부로부터의 이격거리에 따라 발파 진동의 감소 경향을 분석하여 주택가와 같은 인구 밀집 지역으로부터 필요한 이격거리를 제시하고자 한다.
본 연구에서는 목포 용당지역 호남선 복선화 터널굴착이 인근 국가 지하수관측소의 지하수위에 끼친 영향을 현장조사 및 수치모델링을 통해 분석하였다. 목포용당 관측소에서는 2002년 7월부터 1년사이에 약 5m 이상의 지하수위 강하를 보였다. 현장조사 결과 자연적인 강수량 감소나 지하수 이용량의 증가는 원인이 아닌 것으로 나타났다. 해당 관측소와 이격거리 70m 정도에 있는 호남선철도 목포터널이 주요 원인으로 파악되었는데 터널굴착의 시기도 지하수위 강하 시기와 대체적을 일치하였다. 터널굴착의 국가관측소 지하수위에 대한 영향을 정량적으로 분석하기 위해 지하수 유동모델링을 수행하였다. 특히 주변지역에 대한 수리지질 자료가 국가지하수 관측소의 수위영향을 정량화하였다. 현장조사 및 수치모델링 결과 본 국가지하수 관측소의 상당한 수위강하는 목포터널이 직접적인 원인일 가능성이 크나 엄밀한 평가를 위해서는 인근 지역에 대한 추가적인 수리지질학적 조사가 수행되어야 할 것으로 사료된다.
As the intensity of urban underground space development increases, more and more tunnels are planned and constructed, and sometimes it is inevitable to encounter situations where tunnels have to underpass the river embankments. Most previous studies involved tunnels passing river embankments perpendicularly or with large intersection angle. In this study, a project case where two EPB shield tunnels with 8.82 m diameter run parallelly underneath a river embankment was reported. The parallel length is 380 m and tunnel were mainly buried in the moderate / slightly weathered clastic rock layer. The field monitoring result was presented and discussed. Three-dimensional back-analysis were then carried out to gain a better understanding the interaction mechanisms between shield tunnel and embankment and further to predict the ultimate settlement of embankment due to twin-tunnel excavation. Parametrical studies considering effect of tunnel face pressure, tail grouting pressure and volume loss were also conducted. The measured embankment settlement after the single tunnel excavation was 4.53 mm ~ 7.43 mm. Neither new crack on the pavement or cavity under the roadbed was observed. It is found that the more degree of weathering of the rock around the tunnel, the greater the embankment settlement and wider the settlement trough. Besides, the latter tunnel excavation might cause larger deformation than the former tunnel excavation if the mobilized plastic zone overlapped. With given geometry and stratigraphic condition in this study, the safety or serviceability of the river embankment would hardly be affected since the ultimate settlement of the embankment after the twin-tunnel excavation is within the allowable limit. Reasonable tunnel face pressure and tail grouting pressure can to some extent suppress the settlement of the embankment. The recommended tunnel face pressure and tail grouting pressure are 300 kPa and 550 kPa in this study, respectively. However, the volume loss plays the crucial role in the tunnel-embankment interaction. Controlling and compensating the tunneling induced volume loss is the most effective measure for river embankment protection. Additionally, reinforcing the embankment with cement mixing pile in advance is an alternative option in case the predicted settlement exceeds allowable limit.
In the analysis of the effects of rock tunnel blasting vibration on adjacent existing buildings, the model of simplified equivalent load produces higher calculation result of vibration, due to the lack of consideration of the millisecond delay effect. This paper, based on the static force equivalence principle of blasting load, proposes a new determination method of equivalent load of blasting vibration. The proposed method, based on the elastic-static force equivalence principle of stress wave, equals the blasting loads of several single blastholes in the same section of millisecond blasting to the triangle blasting load curve of the exploded equivalent elastic boundary surface. According to the attenuation law of stress wave, the attenuated equivalent triangle blasting load curve of the equivalent elastic boundary is applied on the tunnel excavation contour surface, obtaining the final applied equivalent load. Taking the millisecond delay time of different sections into account, the time-history curve of equivalent load of the whole section applied on the tunnel excavation contour surface can be obtained. Based on Sailing Tunnel with small spacing on Sanmenxia-Xichuan Expressway, an analysis on the blasting vibration response of the later and early stages of the tunnel construction is carried out through numerical simulation using the proposed equivalent load model considering millisecond delay effect and the simplified equivalent triangle load curve model respectively. The analysis of the numerical results comparing with the field monitoring ones shows that the calculation results obtained from the proposed equivalent load model are closer to the measured ones and more feasible.
Xiaohan Zhou;Xinrong Liu;Yu Xiao;Ninghui Liang;Yangyang Yang;Yafeng Han;Zhongping Yang
Geomechanics and Engineering
/
제35권4호
/
pp.395-409
/
2023
Long-span suspension bridges have tunnel anchor systems to maintain stable cables. More investigations are required to determine how closely tunnel excavation beneath the tunnel anchor impacts the stability of the tunnel anchor. In order to investigate the impact of the adjacent tunnel's excavation on the stability of the tunnel anchor, a large-span suspension bridge tunnel anchor is utilised as an example in a three-dimensional numerical simulation approach. In order to explore the deformation control mechanism, orthogonal tests are employed to pinpoint the major impacting elements. The construction of an advanced pipe shed, strengthening the primary support. Moreover, according to the findings the grouting reinforcement of the surrounding rock, have a significant control effect on the settlement of the tunnel vault and plug body. However, reducing the lag distance of the secondary lining does not have such big influence. The greatest way to control tunnel vault settling is to use the grout reinforcement, which increases the bearing capacity and strength of the surrounding rock. This greatly minimizes the size of the tunnel excavation disturbance area. Advanced pipe shed can not only increase the surrounding rock's bearing capacity at the pipe shed, but can also prevent the tunnel vault from connecting with the disturbance area at the bottom of the anchorage tunnel, reduce the range of shear failure area outside the anchorage tunnel, and have the best impact on the plug body's settlement control.
The unloading effect from excavations can cause the deformation of adjacent tunnels, which may seriously influence the operation and safety of those tunnels. However, systematic studies of the deformation characteristics of tunnels located along side excavations are limited, and simplified methods to predict the influence of excavations on tunnels are also rare. In this study, the simulation capability of a finite element method (FEM) considering the small-strain characteristics of soil was verified using a case study. Then, a large number of FEM simulations examining the influence of excavations on adjacent tunnels were conducted. Based on the simulation results, the deformation characteristics of tunnels at different positions and under four deformation modes of the retaining structure were analyzed. The results indicate that the deformation mode of the retaining structure has a significant influence on the deformation of certain tunnels. When the deformation magnitudes of the retaining structures are the same, the influence degree of the excavation on the tunnel increased in this order: from cantilever type to convex type to composite type to kick-in type. In practical projects, the deformation mode of the retaining structure should be optimized according to the tunnel position, and kick-in deformation should be avoided. Furthermore, two methods to predict the influence of excavations on adjacent tunnels are proposed. Design charts, in terms of normalized tunnel deformation contours, can be used to quantitatively estimate the tunnel deformation. The design table of the excavation influence zones can be applied to determine which influence zone the tunnel is located in.
본 연구에서는 도로터널 건설시 감소하는 지하수위 저하의 범위와 이로 인한 인근 계곡 소하천의 영향을 평가하기 위한 유동해석 및 터널공사 시 오탁수 배출에 의한 인근 수원의 오염여부를 평가하기 위한 오염물 이동 해석을 수행하였다. 터널굴착 공기인 30개월 동안 하강하는 지하수의 저하량은 최대 27 m로 나타났고 터널중심에서 50 m 이내에서 가장 큰 것으로 확인되었다. 또한 이로 인한 지하수의 유동이 터널 내로 유입되는 형상으로 보여주고 있으며 터널반경 200 m까지는 적지만 수위저하의 영향이 나타났다. 터널에서 배출되는 오탁수 배출의 영향을 검토하기 위한 오염물 이동 수치모델링 결과 터널종단부에서 발생하는 탁수의 거동범위는 최대 120 m내외이며 이로 인한 소하천의 오염 위험은 크지 않을 것으로 평가되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.