• 제목/요약/키워드: Effect of Flow Velocity

검색결과 1,713건 처리시간 0.029초

A Study on the Flow Characteristics of the Spiral Flow Nozzle with the Width Change of Annular Slit

  • Kim, T.H.;Setoguchi, T.;Lee, Y.W.
    • 한국가시화정보학회지
    • /
    • 제7권1호
    • /
    • pp.14-20
    • /
    • 2009
  • In comparison with previous researches fur swirling flow, the spiral flow self-generated in the spiral flow nozzle has some different characteristics. It is not needed a compulsive tangential momentum to get its velocity component and has long potential core, relatively low swirl ratio, and high focusing ability. In this study, the self-generated mechanism of the spiral flow was clarified and the effect on the width of annular slit on spiral flow characteristics was investigated experimentally and numerically. As a result, the existence of tangential velocity component regardless of a compulsive angular momentum is clarified and the results obtained by experiment have a satisfactory agreement with those by numerical method, quantitatively and qualitatively.

EFFECT OF ASPECT RATIO ON SLIP FLOW IN RECTANGULAR MICROCHANNELS

  • Islam, Md.Tajul;Lee, Yeon-Won
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2803-2810
    • /
    • 2007
  • Three dimensional numerical studies were carried out to investigate the effect of aspect ratio on gas slip flow in rectangular microchannels. We focused on aspect ratio effect on slip velocity, pressure distribution and mass flow rate. As aspect ratio decreases the wall slip velocity also decreases. As a result nonlinearity of pressure distribution increases. The slip velocities on sides and top/bottom walls are different and this difference decreases with increasing aspect ratio. These two velocities are equal when aspect ratio is 1. The ratios of slip mass flow rate over noslip mass flow rate increases with increasing aspect ratios.

  • PDF

백회혈 자침이 뇌혈류에 미치는 영향 (Effect of Paekoe(GV20) Acupuncture on Cerebral Blood Flow)

  • 이홍민;정병식;윤형석;조성규;이상훈;전형준;남상수;김용석;이주형
    • Journal of Acupuncture Research
    • /
    • 제18권6호
    • /
    • pp.105-113
    • /
    • 2001
  • Objective : This study was performed to evaluate the effect of acupuncture on cerebral blood flow by Transcranial Doppler Ultrasonography(TCD) Method : Monitoring of TCD was examined in 11 healthy women volunteer(mean $age:\;24.5{\pm}2.9\;\;years$) before, during and after acupuncture on Paekoe(GV20). Mean velocity, pulsatility index, systolic velocity and diastolic velocity values are analyzed from DWL. MDX4 at different depths of both middle cerebral artery. Results : The results showed a significant(p<0.05; Friedman test & Wilcoxon signed ranks test) increase in mean velocity, systolic velocity and diastolic velocity decrease in pulsatility index, which was measured at different depths of both middle cerebral artery. Conclusion : These results suggest that acupuncture could have a specific effect on cerebral blood flow.

  • PDF

Nonlocal 효과를 고려한 탄소나노파이프의 유체유발 진동 (Flow-induced Vibration of Carbon Nanopipe with Nonlocal Effect)

  • 최종운;김성균;송오섭
    • 한국소음진동공학회논문집
    • /
    • 제22권1호
    • /
    • pp.38-45
    • /
    • 2012
  • In this paper, flow-induced flutter instability of a cantilever carbon nanotube conveying fluid and modelled as a thin-walled beam is investigated. Analytically nonlocal effect, transverse shear and rotary inertia are incorporated in this study. The governing equations and the boundary conditions are derived through Hamilton's principle. Numerical analysis is performed by using extended Galerkin method which enables us to obtain more exact solutions compared with conventional Galerkin method. Variation of critical flow velocity of carbon nanopipes based on three different models such as analytically nonlocal model, partially nonlocal model, and local model are investigated and pertinent conclusion is outlined.

위상대조도 MRI에서 숙임각에 따른 상행대동맥의 혈류 측정 (Blood Flow Measurement with Phase Contrast MRI According to Flip Angle in the Ascending Aorta)

  • 김문선;권대철
    • 한국자기학회지
    • /
    • 제26권4호
    • /
    • pp.142-148
    • /
    • 2016
  • 자기공명영상에서 위상대조(phase contrast; PC) 기법으로 혈류 속도와 혈류량을 정량적으로 측정하기 위해 VENC(150 cm/s)에서 숙임각의 변화에 따른 혈류 속도와 혈류량을 측정하였다. 1.5T MRI로 지원자 17명(여: 8, 남: 9, 평균연령 $57.9{\pm}15.4$)을 대상으로 non-breath holding 기법을 적용하여 상행대동맥에서 VENC(150 cm/s)로 숙임각을 $20^{\circ}$, $30^{\circ}$, $40^{\circ}$ 변화하여 측정하였다. 혈류는 average velocity, peak velocity, net forward volume, net forward volume/body surface area를 획득하였다. 상행대동맥에서 AV(average velocity)의 평균값은 숙임각 $20^{\circ}$(9.87 cm/s), $30^{\circ}$(9.6 cm/s), $40^{\circ}$(10.05 cm/s)로 측정되었다. 숙임각을 $20^{\circ}$, $30^{\circ}$, $40^{\circ}$에서 peak velocity, average velocity, net forward volume, net forward volume/body surface area는 통계적인 유의한 차이가 없었다(p > .05). 혈류속도와 혈류량 측정은 매개변수를 조정하여 적용하면 심장혈관 질환의 진단 및 치료에 중요한 정보가 되는 혈류량을 정확히 계산하고, 혈류량 측정에 관한 연구에 도움을 줄 수 있다.

선망어업의 생산성 향상에 관한 연구-II - 파워불록과 트리플랙스용 선망 모형의 유속에 따른 침강거동 - (Studies on the improvement of the productivity of purse seine fishery-II - The sinking movements with the flow velocity on the model purse seine of the subjective power block and triplex)

  • 김석종
    • 수산해양기술연구
    • /
    • 제43권1호
    • /
    • pp.1-11
    • /
    • 2007
  • It is the basic studies for productivity improvement and laborsaving of purse seine fishery. Because the seine shape is apt to be transformed in seine shooting process due to the effect of tide, this study is intended to establish 4 steps, whose flow velocity are 0, 2, 4 and 6cm/sec, in flume tank and perform the experiment to review the character. We used two model seines designed on the scale of 1 to 180 based on the power block seine, which is the mackerel purse seine generally used in the near sea of Jeju Island and triplex seine, which is the mackerel purse seine of one boat system fishing expected in the future, for the experiment, analyzed of the sinking movements on the two seines and its results are as follows. In the setting over the flow velocity 6cm/sec, experiment was impossible because of flying and transformation of seine were severe. The sinking movements of P seine and T seine generally showed linear phenomenon and the sinking speed showed gentle curve shape. Sinking tendency was distinguished by existence of flow velocity. When there is flow velocity, it showed the phenomenon that it sinking by similar type. Although sinking depth and sinking speed did not show distinguished classification, P seine shows bigger than T seine. When there was in flow velocity, the elapsed time(Et) and sinking depth (PDp, TDp) of P seine and T seine can be shown such experimental equations as PDp=(0.21V+4.96)Et-(0.62V-0.10) and TDp=(0.19V+4.95)Et-(0.72V+0.34). When there was in flow velocity, the elapsed time and siking speed (PSp, TSp) of P seine and T seine can be shown such experimental equations as $PSp=-0.11Et^2+1.42Et+1.75\;and\;TSp=-0.11Et^2+1.41Et+1.37$.

Scale effect를 고려한 탄소나노튜브의 유체유발진동 (Scale Effect on the Flow-Induced Vibration of Carbon Nanotubes Conveying Fluids)

  • 최종운;김성균;박상윤;김영준;송오섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.147-152
    • /
    • 2011
  • In this paper, static and oscillatory loss of stability of carbon nanotube conveying fluid and modelled as a thin-walled beam is investigated. Analytically nonlocal effect, transverse shear and rotary inertia are incorporated in this study. The governing equations and the boundary conditions are derived through Hamilton's principle. Numerical analysis is performed by using extend Galerkin method which enables us to obtain more exact solutions compared with conventional Galerkin method. Variations of critical flow velocity for analytically nonlocal effect, partially nonlocal effect and local effect of carbon nanopipes are investigated and pertinent conclusion is outlined.

  • PDF

Counter-Current Air-Water Flow in Narrow Rectangular Channels With Offset Strip Fins

  • Kim, Byong-Joo;Sohn, Byung-Hu;Koo, Kee-Kahb
    • Journal of Mechanical Science and Technology
    • /
    • 제17권3호
    • /
    • pp.429-439
    • /
    • 2003
  • Counter-current two-phase flows of air- water in narrow rectangular channels with offset strip fins have been experimentally investigated in a 760 mm long and 100 mm wide test section with 3.0 and 5.0 mm gap widths. The two-phase flow regime, channel-average void fractions and two-phase pressure gradients were studied. Flow regime transition occurred at lower superficial velocities of air than in the channels without fins. In the bubbly and slug flow regimes, elongated bubbles rose along the subchannel formed by fins without lateral movement. The critical void fraction for the bubbly-to-slug transition was about 0.14 for the 3 mm gap channel and 0.2 for the 5 mm gap channel. respectively. Channel-average void fractions in the channels with fins were almost the same as those in the channels without fins. Void fractions increased as the gap width increased, especially at high superficial velocity of air. The presence of fins enhanced the two-phase distribution parameter significantly in the slug flow, where the effect of gap width was almost negligible. Superficial velocity of air dominated the two-phase pressure gradients. Liquid superficial velocity and channel gap width has only a minor effect on the pressure gradients.

아음속 스파이럴 제트 유동에 관한 기초적 연구 (A Fundamental Study of the Subsonic Spiral Jet)

  • 조위분;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.502-507
    • /
    • 2003
  • Spiral jet is characterized by a wide region of the free vortex flow with a steep axial velocity gradient, while swirl jet is largely governed by the forced vortex flow and has a very low axial velocity at the jet axis. However, detailed generation mechanism of spiral flow components is not well understood, although the spiral jet is extensively applied in a variety of industrial field. In general, it is known that spiral jet is generated by the radial flow injection through an annular slit which is installed at the inlet of convergent nozzle. The objective of the present study is to understand the flow characteristics of the spiral jet, using a computational method. A finite volume scheme is used to solve 3-dimensional Navier-Stokes equations with RNG ${\kappa}-{\varepsilon}$ turbulent model. The computational results are validated by the previous experimental data. It is found that the spiral jet is generated by coanda effect at the inlet of the convergent nozzle and its fundamental features are dependent the pressure ratio of the radial flow through the annular slit and the coanda wall curvature.

  • PDF

A Study on the Flow Characteristics with the Width of Annular Slit in Spiral Flow Nozzle

  • Kim, T.H.;Setoguchi, T.;Lee, Y.W.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2007년도 추계학술대회
    • /
    • pp.143-148
    • /
    • 2007
  • In comparison with previous researches for swirling flow, the spiral flow self-generated in the spiral flow nozzle has some different characteristics. It is not needed a compulsive tangential momentum to get its velocity component and has long potential core, relatively low swirl ratio, and high focusing ability. In this study, the self-generated mechanism of the spiral flow was clarified and the effect on the width of annular slit on spiral flow characteristics was investigated experimentally and numerically. As a result, the existence of tangential velocity component regardless of a compulsive angular momentum is clarified and the results obtained by experiment have a satisfactory agreement with those by numerical method, quantitatively and qualitatively.

  • PDF