• 제목/요약/키워드: Effect of Curvature

검색결과 650건 처리시간 0.035초

용접지단부 TIG처리에 의한 피로강도향상 및 피로특성 (Fatigue Strength Improvement and Fatigue Characteristics by TIG-Dressing on Weld Bead Toes)

  • 정영화;김익겸;남왕현;장동휘
    • 산업기술연구
    • /
    • 제20권A호
    • /
    • pp.169-178
    • /
    • 2000
  • The 4-point bending tests have been performed In order to estimate the effect of TIG-dressing on fatigue strength and fatigue characteristics quantitatively for non load-carrying fillet welded joints subjected to pure bending. As a result of fatigue tests, fatigue strengths of as-welded specimens have satisfied the grade of fatigue strength prescribed in specifications of korea, AASHTO and JSSC. Fatigue strength at 2 million cycles of TIG-dressing specimens have increased compared with as-welded specimens. As the result of beachmark tests, fatigue cracks occurred at several points, where the radius of curvature and flank angle in the weld bead toes were low, and grew as semi-elliptical cracks, then approached to fracture. As a result of finite element analysis, stress concentration factor in weld bead toes has closely related to the flank angle and radius of curvature, and between these, the radius of curvature has more largely affected in stress concentration factor than flank angle. As a result of fracture mechanics approaches, the crack correction factor of test specimens has largely affected on stress gradient correction factor in case a/t is below 0.4. From the relations between stress intensity factor range estimated from FEM analysis and fatigue crack growth rate, fatigue life has been correctly calculated.

  • PDF

A Study on Laminar Lifted Jet Flames for Diluted Methane in Co-flow Air

  • Sapkal, Narayan P.;Lee, Won June;Park, Jeong;Kwon, Oh Boong
    • 한국연소학회지
    • /
    • 제20권3호
    • /
    • pp.1-7
    • /
    • 2015
  • The laminar lifted jet flames for methane diluted with helium and nitrogen in co-flow air have been investigated experimentally. Such jet flames could be lifted in both buoyancy-dominated and jet momentum dominated regimes (even at nozzle exit velocities much higher than stoichiometric laminar flame speed) despite the Schmidt number less than unity. Chemiluminescence intensities of $OH^*$ radical (good indicators of heat release rate) and the radius of curvature for tri-brachial flame were measured using an intensified charge coupled device (ICCD) camera and digital video camera at various conditions. It was shown that, an increase in $OH^*$ concentration causes increase of edge flame speed via enhanced chemical reaction in buoyancy dominated regime. In jet momentum dominated regime, an increase in radius of curvature in addition to the increased $OH^*$ concentration stabilizes such lifted flames. Stabilization of such lifted flames is discussed based on the stabilization mechanism.

Hygrothermoelasticity in a porous cylinder under nonlinear coupling between heat and moisture

  • Ishihara, Masayuki;Yoshida, Taku;Ootao, Yoshihiro;Kameo, Yoshitaka
    • Structural Engineering and Mechanics
    • /
    • 제75권1호
    • /
    • pp.59-69
    • /
    • 2020
  • The purpose of this study is to develop practical tools for the mechanical design of cylindrical porous media subjected to a broad gap in a hygrothermal environment. The planar axisymmetrical and transient hygrothermoelastic field in a porous hollow cylinder that is exposed to a broad gap of temperature and dissolved moisture content and is free from mechanical constraint on all surfaces is investigated considering the nonlinear coupling between heat and binary moisture and the diffusive properties of both phases of moisture. The system of hygrothermal governing equations is derived for the cylindrical case and solved to illustrate the distributions of hygrothermal-field quantities and the effect of diffusive properties on the distributions. The distribution of the resulting stress is theoretically analyzed based on the fundamental equations for hygrothermoelasticity. The safety hazard because of the analysis disregarding the nonlinear coupling underestimating the stress is illustrated. By comparing the cylinder with an infinitesimal curvature with the straight strip, the significance to consider the existence of curvature, even if it is infinitesimally small, is demonstrated qualitatively and quantitatively. Moreover, by investigating the bending moment, the necessities to consider an actual finite curvature and to perform the transient analysis are illustrated.

사무직 여성 근로자의 경부 통증 유무와 관련된 요인 연구 (The Study on the Factors Related to the Existence of Neck Pain in Female Office Workers)

  • 남기봉;정석희;김성수
    • 한방재활의학과학회지
    • /
    • 제19권2호
    • /
    • pp.213-225
    • /
    • 2009
  • Objectives : The purpose of this study was to investigate the factors related on pain in female office workers. Methods : Neck pain group of 31 female subjects complained of neck and arm discomfort. Normal group of 20 female subjects had no complaints or minimal discomfort. Cervical curvature and muscle tone were assessed by whole spine x-ray, meridian-electromyography(MEMG), craniovertebral angle, and Moire. Neck pain was evaluated by Neck Disability Index(NDI) and Visual Analog Scale(VAS). The emotional and other physical factors that could effect neck pain were checked by questionnaires including Beck Depression Index(BDI), Stress Reaction Index(SRI), Holmes & Rahe Social Readjustment Rating Scale(SRRS), International Physical Activity Questionnaire(IPAQ), and Gastrointestinal Symptom Rating Scale(GSRS). Results : The contraction and fatigue of upper trapezius by MEMG was significantly higher in the neck pain group. And BDI, SRI, SRRS, and GSRS were significantly higher in the neck pain group (p<0.05). However, there was no significant difference in the Jackson's angle, Cobb's method, craniovertebral angle, and moire between two groups. Conclusions : The results suggest that neck pain is related to mental stress rather than physical stress and physical stress does not change cervical curvature significantly.

A combined stochastic diffusion and mean-field model for grain growth

  • Zheng, Y.G.;Zhang, H.W.;Chen, Z.
    • Interaction and multiscale mechanics
    • /
    • 제1권3호
    • /
    • pp.369-379
    • /
    • 2008
  • A combined stochastic diffusion and mean-field model is developed for a systematic study of the grain growth in a pure single-phase polycrystalline material. A corresponding Fokker-Planck continuity equation is formulated, and the interplay/competition of stochastic and curvature-driven mechanisms is investigated. Finite difference results show that the stochastic diffusion coefficient has a strong effect on the growth of small grains in the early stage in both two-dimensional columnar and three-dimensional grain systems, and the corresponding growth exponents are ~0.33 and ~0.25, respectively. With the increase in grain size, the deterministic curvature-driven mechanism becomes dominant and the growth exponent is close to 0.5. The transition ranges between these two mechanisms are about 2-26 and 2-15 nm with boundary energy of 0.01-1 J $m^{-2}$ in two- and three-dimensional systems, respectively. The grain size distribution of a three-dimensional system changes dramatically with increasing time, while it changes a little in a two-dimensional system. The grain size distribution from the combined model is consistent with experimental data available.

HVAC 덕트내의 3차원 난류유동에 관한 수치해석적 연구 (Numerical Analysis of Three Dimensional Turbulent Flow in a HVAC Duct)

  • 정수진;류수열;김태훈
    • 한국자동차공학회논문집
    • /
    • 제4권4호
    • /
    • pp.118-129
    • /
    • 1996
  • In this study, three dimensional flow analysis in a HVAC duct was performed computationally using various turbulence models and compared numerical predictions such as outlet flow split, surface pressure distribution along the duct to experimental data. It's well known that accuracy of computational predictions of flow heavily dependent on turbulent models and discritization method. Therefore, in this work, to assess the ability of turbulent models to predict characteristics of duct flow, three kinds of models, namely standard $k-\varepsilon$, RNG $k-\varepsilon$ and modified $k-\varepsilon$, containing parameter for the effect of streamline curvature were employed and validated one another by comparing with experimental data. In results, modified $k-\varepsilon$ turbulence model allows a successful prediction of static pressure distribution particulary at around strong curvature but little improvement flow split. In the futrue, adoption of CFD to design HVAC duct with modified $k-\varepsilon$ model will bring benefits of producing more accurate prediction, and also give designers more detail information much more than now.

  • PDF

A Mechanistic Study on Addition Reactions of Alicyclic Amines to 3-Butyn-2-one

  • 음익환;이정숙;육성민
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권7호
    • /
    • pp.776-779
    • /
    • 1998
  • Second-order rate constants have been measured spectrophotometrically for the addition reaction of a series of alicyclic amines to 3-butyn-2-one to yield their respective enamines at 25.0 'C. The reactivity of the amines increases with increasing the basicity of the amines. However, the Bronsted-type plot obtained exhibits a downward curvature as the basicity of the amines increases, i.e. βnuc decreases from 0.3 for low basic amines (pKa < 9) and to 0.1 for highly basic amines (pKa > 9). Such a curvature in the Bronsted-type plot is clearly indicative of a change in the reaction mechanism or transition state structure. From the corresponding reactions run in D2O, the magnitude of kinetic isotope effect (KIE) has been calculated to be about 0.8 for highly basic amines and 1.21 for weakly basic amines. The difference in the magnitude of KIE also supports a change in the reaction mechanism or transition state structure upon changing the basicity of the amines. Furthermore, the small KIE clearly suggests that H+ transfer is not involved in the rate-determining step, i.e. the addition reaction is considered to proceed via a stepwise mechanism in which the attack of the amines to the acetylene is the rate-determining step. The curvature in the Bronsted-type plot has been attributed to a change in the degree of bond formation between the amine and the acetylene.

Effect of boundary mobility on nonlinear pulsatile-flow induced dynamic instability of FG pipes

  • Zhoumi Wang;Yiru Ren;Qingchun Meng
    • Structural Engineering and Mechanics
    • /
    • 제86권6호
    • /
    • pp.751-764
    • /
    • 2023
  • In practical engineering such as aerial refueling pipes, the boundary of the fluid-conveying pipe is difficult to be completely immovable. Pipes under movable and immovable boundaries are controlled by different dominant nonlinear factors, where the boundary mobility will affect the nonlinear dynamic characteristics, which should be focused on for adopting different strategies for vibration suppression and control. The nonlinear dynamic instability characteristics of functionally graded fluid-conveying pipes lying on a viscoelastic foundation under movable and immovable boundary conditions are systematically studied for the first time. Nonlinear factors involving nonlinear inertia and nonlinear curvature for pipes with a movable boundary as well as tensile hardening and nonlinear curvature for pipes with an immovable boundary are comprehensively considered during the derivation of the governing equations of the principal parametric resonance. The stability boundary and amplitude-frequency bifurcation diagrams are obtained by employing the two-step perturbation- incremental harmonic balance method (TSP-IHBM). Results show that the movability of the boundary of the pipe has a great influence on the vibration amplitude, bifurcation topology, and the physical meanings of the stability boundary due to different dominant nonlinear factors. This research has guidance significance for nonlinear dynamic design of fluid-conveying pipe with avoiding in the instability regions.

흡기포트 및 밸브 형상에 따른 정상 유동 특성 (Numerical analysis of flow characteristics with intake port and valve design)

  • 이상진;김성철;김득상;엄인용;조용석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.921-927
    • /
    • 2001
  • Steady flow bench test is a practical, powerful and widely used test in most engine manufacturers to give a design concept of a new engine. In order to use steady data as a performance index, it is necessary to build some database, which can correlate the port characteristics with engine data. However, it is very hard to investigate all port and valve shapes with experimental tools. The steady flow scheme is relatively simple and its results are bulk ones such as flow rate and momentum of flow. Therefore a CFD code can be easily applied to the port evaluation. In this study, the steady flow test was simulated through two and three-dimensional analysis on intake port design for comparing with experimental data and confirming the feasibility of applying analytic method. For this purpose, the effect of valve curvature on flow rate was estimated by a CFD code. There results were compared with those of real steady flow tests. As a result, the 2-D analysis described the phenomena qualitatively well, and also the results of 3-D analysis were almost consistent with experimental data.

  • PDF

인체의 복곡면과 직물 변형 특성을 이용한 의복압 예측법의 개선 (Prediction of the Clothing Pressure Using the Radii of Double Curvature and Transformation of a Fabric)

  • 이예진;홍경희
    • 한국의류학회지
    • /
    • 제29권8호
    • /
    • pp.1168-1175
    • /
    • 2005
  • Clothing pressure has close relation with clothing comfort and depends on the pattern and properties of textile fabrics. Choosing a suitable clothing pressure is an essential factor for designing functional clothing such as the foundation for reshaping of a body contour or medical items for bum patient, and etc. However, it is hard to measure pressure values at the curved surface of a human body correctly. Recently, an air pack type pressure sensor, which has relatively excellent performance has been used to measure clothing pressure, however, it is still inconvenient to apply because it is a contact- type sensor. Therefore, in this paper, we suggest an indirect method that can measure clothing pressure without touching the subject by improving the equation of Kirk and Ibrahim (1966). However, confusions have been occurred when someone use the equation since the definition of parameters are somewhat vague. Furthermore, the estimated clothing pressure obtained by the previous method are quite different from the real values because this method does not consider the 3D effect of a human body and property changes of a transformed fabric. In this paper, the direction of principal stress and the radius of curvature in the principal direction were searched in the 3D image of the deformed girdle to get more accurate clothing pressure. The estimated clothing pressure was verified by comparing the result of the air pack type pressure sensor. It was found that the accuracy of the pressure estimation was improved by considering the 3D curvature of human body and the directional characteristics of textile fabrics.