• Title/Summary/Keyword: Effect of Cu addition

Search Result 499, Processing Time 0.03 seconds

Studies on the Manufacture and Production of Enzyme Utilizing for Food Industry -Development of the powerful microbial pectic enzyme utilizing for the clarification of fruit juice- (식품공업(食品工業)에 이용(利用)되는 효소(酵素)의 생산(生産)과 제품화(製品化)에 관(關)한 연구(硏究) -과즙(果汁)의 청징(淸澄)에 사용(使用)하는 강력(强力)한 미생물(微生物)펙틴분해효소(分解酵素)의 개발(開發)-)

  • Chung, Man-Jae
    • Korean Journal of Food Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.237-244
    • /
    • 1978
  • Among the strains isolated form the various sources, the strain AC-12 producing a powerful pectinase was selected by the extensive screening test. The selected strain was indentified and its toxicity investigated. The conditions of the pectinase production, the characteristics of the purified enzyme and the clarification effect on the apple juice were studied. 1. The selected strain AC-12 was identified by the classification method of paper and fennel and named as Aspergillus sp. AC-12. 2. As a result of the breeding test of the white mouse, no toxicity was found from this enzyme. 3. The yield of pectinase in the medium of defatted rice bran was much better than that in the medium of wheat bran. 4. The optimum conditions for the culture of the strain in the medium of defatted rice bran were that the cultural time was 72hrs, the amount of water to be added about 80%, temperature $30{\sim}35^{\circ}C$ and pH $3.0{\sim}5.0$. 5. The yield of pectinase was slightly increased by the addition of pectin to the medium of defatted rice bran and by the addition of pectin, $NaNO_3$ and $K_2HPO_4$ to the medium of wheat bran, respectively. 6. The optimum conditions for the enzyme activity were pH $3.0{\sim}4.0$ and temperature $40{\sim}50^{\circ}C$. The enzyme was stable below $40^{\circ}C$ and pH $2.0{\sim}8.0$, respectively. But above $50^{\circ}C,$ this enzyme was abruptly inactivated. The activity was slightly increased by the addition of $MnSO_4\;and\;CuSO_4.$ 7. It was regarded that the opimum temperature for the clarification of the apple juice was $40{\sim}50^{\circ}C$, the optimum pH 3.0 and the optimun concentration of the enzyme 0.1%, and the apple juice was almost clarified by the reaction at $45^{\circ}C$ for 60 minutes.

  • PDF

Antioxidant Effect of Hot water and Ethanol extracts from Cheonnyuncho (Opuntia humifusa) on Reactive Oxygen Species (ROS) Production in 3T3-L1 Adipocytes (3T3-L1 지방세포내 ROS 생성에 대한 천년초 열수 및 에탄올 추출물의 항산화 효과)

  • Yoon, Bo-Ra;Lee, Young-Jun;Kim, Sun-Gu;Jang, Jung-Young;Lee, Hyo-Ku;Rhee, Seong-Kap;Hong, Hee-Do;Choi, Hyeon-Son;Lee, Boo-Yong;Lee, Ok-Hwan
    • Food Science and Preservation
    • /
    • v.19 no.3
    • /
    • pp.443-450
    • /
    • 2012
  • Recently, NADPH oxidase 4 (NOX4)-mediated generation of intracellular reactive oxygen species (ROS) was proposed to accelerate adipogenesis of 3T3-L1 cell. We have previously shown that Cheonnyuncho (Opuntia humifusa) extract significantly inhibited adipocyte differentiation via downregulation of $PPAR{\gamma}$ (peroxisome proliferator-activated receptor gamma) gene expression. In this study, we focused on the molecular mechanism(s) of NOX4, G6PDH (glucose-6-phosphate dehydrogenase) and antioxidant enzymes in anti-oxidative activities of 3T3-L1 adipocytes. Our results indicate that Cheonnyuncho extracts markedly inhibits ROS production during adipogenesis in 3T3-L1 cells. Cheonnyuncho extracts suppressed the mRNA expression of the pro-oxidant enzyme such as NOX4 and the NADPH-producing G6PDH enzyme. In addition, treatment with Cheonnyuncho extract was found to upregulate mRNA levels of antioxidant enzymes such as Mn-SOD (manganese-superoxide dismutase), Cu/Zn-SOD (copper/zinc-SOD), glutathione peroxidase (GPx), glutathion reductase (GR), and catalase, all of which are important for endogenous antioxidant responses. These data suggest that Cheonnyuncho extract may be effective in preventing the rise of oxidative stress during adipocyte differentiation through mechanism(s) that involves direct down regulation of NOX4 and G6PDH gene expression or via upregulation of endogenous antioxidant responses.

Effect of Freshwater Discharge on the Seawater Quality (Nutrients, Organic Materials and Trace Metals) in Cheonsu Bay (여름철 천수만 해수에서 담수 대량 방류에 따른 영양염, 유기물 및 미량금속의 변화)

  • LEE, JI-YOON;CHOI, MAN-SIK;SONG, YUNHO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.4
    • /
    • pp.519-534
    • /
    • 2019
  • When the fresh water from the artificial lakes (Ganwolho and Bunamho) were discharged to Cheonsu Bay in summer to prevent the flood over the reclaimed farmland near the lakes, the impact on water qualities (nutrients, organic matters, trace metals) within the bay was investigated through four surveys (June, July, August and October, 2011). Dissolved inorganic nitrogen (DIN) increased about as much as 3-4 times over the whole water column when the freshwater was discharged. And the main species composition of DIN changed from ammonia to nitrate. Dissolved inorganic phosphorus (DIP) decreased as much as 2 times in surface waters, but increased as much as 1.5 times in deep waters, and also silicate concentrations increased as much as 3-4 times in deep waters of the inner bay. The N/P ratios in Chunsu bay seawaters were much higher (2 to 7 times) than the Redfield ratio when the freshwaters were discharged, which indicated the phosphorus limiting in the phytoplankton growth. Dissolved organic carbon (DOC) and nitrogen (DON) increased as much as about 2 times. In addition, particulate organic matters (POC, PON, POP, Bio-Si) increased as much as above 2 times in the surface waters of the inner bay. Trace metals (Fe, Mn, Co, Ni, Cu) increased in the surface waters of the inner bay, but dissolved Cd concentrations decreased as much as 2 times. Therefore, when the contaminated fresh waters from the artificial lakes were discharged into the bay, nutrients, organic matters and trace metals generally increased compared to normal period. Since the phytoplankton bloom occurred in the surface waters of the inner bay, dissolved oxygens at the surface waters were oversaturated and hence hypoxic in the deep waters. Highly enriched nutrients concentrations were found in deep waters of the inner bay, which was accompanied with the hypoxic condition. Finally, the water quality in the inner bay of the Chunsu bay was deteriorated from less than grade 3 in normal periods to grade 5 when the freshwaters from the artificial lakes were discharged in summer.

Fate of Heavy Metals in Activated Sludge: Sorption of Heavy Metal ions by Nocardia amarae

  • Kim, Dong-wook
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 1998.10a
    • /
    • pp.2-4
    • /
    • 1998
  • Proliferation of Nocardia amarae cells in activated sludge has often been associated with the generation of nuisance foams. Despite intense research activities in recent years to examine the causes and control of Nocardia foaming in activated sludge, the foaming continued to persist throughout the activated sludge treatment plants in United States. In addition to causing various operational problems to treatment processes, the presence of Nocardia may have secondary effects on the fate of heavy metals that are not well known. For example, for treatment plants facing more stringent metal removal requirements, potential metal removal by Nocardia cells in foaming activated sludge would be a welcome secondary effect. In contrast, with new viosolid disposal regulations in place (Code o( Federal Regulation No. 503), higher concentration of metals in biosolids from foaming activated sludge could create management problems. The goal of this research was to investigate the metal sorption property of Nocardia amarae cells grown in batch reactors and in chemostat reactors. Specific surface area and metal sorption characteristics of N. amarae cells harvested at various growth stages were compared. Three metals examined in this study were copper, cadmium and nickel. Nocardia amarae strain (SRWTP isolate) used in this study was obtained from the University of California at Berkeley. The pure culture was grown in 4L batch reactor containing mineral salt medium with sodium acetate as the sole carbon source. In order to quantify the sorption of heavy metal ions to N amarae cell surfaces, cells from the batch reactor were harvested, washed, and suspended in 30mL centrifuge tubes. Metal sorption studies were conducted at pH 7.0 and ionlc strength of 10-2M. The sorption Isotherm showed that the cells harvested from the stationary and endogenous growth phase exhibited significantly higher metal sorption capacity than the cells from the exponential phase. The sequence of preferential uptake of metals by N. amarae cells was Cu>Cd>Ni. The specific surFace area of Nocardia cells was determined by a dye adsorption method. N.amarae cells growing at ewponential phase had significantly less specific surface area than that of stationary phase, indicating that the lower metal sorption capacity of Nocardia cells growing at exponential phase may be due to the lower specific surface area. The growth conditions of Nocardia cells in continuous culture affect their cell surface properties, thereby governing the adsorption capacity of heavy metal. The comparison of dye sorption isotherms for Nocardia cells growing at various growth rates revealed that the cell surface area increased with increasing sludge age, indicating that the cell surface area is highly dependent on the steady-state growth rate. The highest specific surface area of 199m21g was obtained from N.amarae cell harvested at 0.33 day-1 of growth rate. This result suggests that growth condition not only alters the structure of Nocardia cell wall but also affects the surface area, thus yielding more binding sites of metal removal. After reaching the steady-state condition at dilution rate, metal adsorption isotherms were used to determine the equilibrium distributions of metals between aqueous and Nocardia cell surfaces. The metal sorption capacity of Nocardia biomass harvested from 0.33 day-1 of growth rate was significantly higher than that of cells harvested from 0.5- and 1-day-1 operation, indicatng that N.amarae cells with a lower growth rate have higher sorpion capacity. This result was in close agreement with the trend observed from the batch study. To evaluate the effect of Nocardia cells on the metal binding capacity of activated sludge, specific surface area and metal sorption capacity of the mixture of Nocardia pure cultures and activated sludge biomass were determined by a series of batch experiments. The higher levels of Nocardia cells in the Nocardia-activated sludge samples resulted in the higher specific surface area, explaining the higher metal sorption sites by the mixed luquor samples containing greater amounts on Nocardia cells. The effect of Nocardia cells on the metal sorption capacity of activated sludge was evaluated by spiking an activated sludge sample with various amounts of pre culture Nocardia cells. The results of the Langmuir isotherm model fitted to the metal sorption by various mixtures of Nocardia and activated sludge indicated that the mixture containing higher Nocardia levels had higher metal adsorption capacity than the mixture containing lower Nocardia levels. At Nocardia levels above 100mg/g VSS, the metal sorption capacity of activate sludge increased proportionally with the amount of Noeardia cells present in the mixed liquor, indicating that the presence of Nocardia may increase the viosorption capacity of activated sludge.

  • PDF

Studies on the Separation and Preconcentration of Metal Ions by Chelating Resin containing (Polystyrene-divinylbenzene)-thiazolylazo Phenol Derivatives(I) ((Polystyrene-divinylbenzene)-thiazolylazo phenol형 킬레이트 수지에 의한 금속이온의 분리 및 농축에 관한 연구(I))

  • Lim, Jae-Hee;Kim, Min-Kyun;Lee, Chang-Hun;Lee, Won
    • Analytical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.279-291
    • /
    • 1996
  • The new chelating resins, XAD-2, 4, 16-TAC and XAD-2, 4, 16-TAO were synthesized by Amberlite XAD-2, XAD-4, and XAD-16 macroreticular resins with 2-(2-thiazolylazo)-p-cresol(TAC) and 4-(2-thiazolylazo)orcinol(TAO) as functional groups and were characterized by elemental analysis and FT-IR spectrometry. It was found that the content of functional group in chelating resin was 0.60mmol/g in XAD-16-TAC and 0.68mmol/g in XAD-16-TAO respectively. The chelating resins were stable in acidic and alkaline solution and can be reused over 10 times. The sorption behavior of some metalions to two chelating resins was investigated by batch method, which included batch equilibrium, effect of pH, coexisting ions and masking agent. For the optimum condition of sorption, the time required for equilibrium was about 1 hour and optimum pH was 5. In the presence of anions such as ${SO_4}^{2-}$ and $CH_3COO^-$, the sorption of U(VI) ion was slightly reduced but other anions such as $Cl^-$ and $NO{_3}^-$ revealed no interference effect. Also, sorption capacity of U(VI) ion was decreased by addition of $CO{_3}^{2-}$ ion because of complex formation of $[UO_2(CO_3)_3]^{4-}$, but alkali metals and alkali earth metals including Na(I), K(I), Mg(II), and Ca(II) were not affected for the sorption extent. Masking agent, NTA showed better separation efficiency of U(VI) ion from coexisting metal ions such as Th(IV), Zr(IV), Hf(IV), Cu(II), Cd(II), Pb(II), Ni(II), Zn(II) and Mn(II) than EDTA, CDTA.

  • PDF

Changes in Dormant Phase and Bud Development of 'Fuji' Apple Trees in the Chungju Area of Korea (충주지역에서 '후지' 사과나무의 휴면단계 변화 및 눈 발달)

  • Lee, ByulHaNa;Park, YoSup;Park, Hee-Seung
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.501-510
    • /
    • 2015
  • In this study, we investigated the onset and release of endo-dormancy under natural conditions by observing bud break characteristics in 'Fuji' apple trees using water cuttings. Through examinations of bud break rate and days to bud break, we found that the endo-dormancy of 'Fuji' apple tree continues for 70 d from 165 to 255 d after full bloom (DAFB), from late October to early January of the following year. In addition, within 20 d of first bud break, based on a final bud break rate of 60% or more, we able to identify the timing of the changeover from para-dormancy to endo-dormancy, and endo-dormancy to eco-dormancy. Analysis of the chilling requirement during the endo-dormancy period revealed that chilling accumulation up to 255 DAFB to release endo-dormancy amounted to 666 and 517 h based on the CH and Utah models, respectively. Observation of internal changes in the bud during endo-dormancy showed that flower bud differentiation begins from mid-July, and t ime of inflorescence o f the disk f lower is a vailable to f ind. The f lower buds subsequently developed slowly but steadily during endo-dormancy and in the following year in February, the developmental stage of each organ had progressed. Moreover, the flower buds of 'Fuji' apples were mostly healthy during the dormancy period, but some exhibited necrosis of flower primordium, due partial cell damage from the formation of ice crystals rather than a direct effect of the low temperature. Flower buds were formed in both the axillary buds of bourse shoots and terminal buds of spurs, but lower bud differentiation was observed for the terminal buds of spurs at rate of about 65% of total buds, which was directly related to the bud size and shoot diameter.

Mycelial Culture of Lentinus edodes Alleviates Rat Liver Toxicity Induced by Carbon Tetrachloride and Ethanol (표고버섯균사체의 사염화탄소 및 알콜로 처리된 흰쥐 간기능 보호 효과)

  • Ha, Yeong-L.;Kim, Young-S.;Ahn, Chae-R.;Kweon, Jung-M.;Park, Cherl-W.;Ha, Young-K.;Kim, Jeong-O.
    • Journal of Life Science
    • /
    • v.20 no.1
    • /
    • pp.133-141
    • /
    • 2010
  • The protective effect of a mixed powder from solid-cultured and liquid-cultured Lentinus edodes mycelia (2:1, w/w) (designate LED) on the carbon tetrachloride ($CCl_4$)- and ethanol-induced hepatotoxicity of male Sprague-Dawley (SD) rat was investigated. In the $CCl_4$-induced rat hepatotoxicity experiment, rats of 4 groups (6 rats/group) were administere with Normal (0.2 ml distilled water), Control (0.2 ml distilled water), LED (LED 200 mg/kg BW + 0.2 ml distilled water), and Silymarin (200 mg/kg BW + 0.2 ml distilled water), p.o., daily for 2 weeks. Afterwards, all groups except for the Normal group were subjected to abdominal injection with $CCl_4$ ($CCl_4$ : corn oil, 1:1 v/v; 0.5 ml/kg BW). For the ethanol- induced rat hepatotoxicity experiment, rats were divided into 5 groups (5 rats/group): Normal; Pair-fed control (PFC); Control (ethanol); LED (ethanol + LED 200 mg/kg BW); and Silymarin (ethanol + silymarin 200 mg/kg BW). Rats of the Normal and PFC groups were fed a basal liquid diet, and rats of the Control, LED, and Silymarin groups were fed a liquid ethanol diet containing LED or Silymarin. Eight weeks later, blood and liver samples were collected to analyze biomarkers. In $CCl_4$-induced SD rats, LED elevated hepatic superoxide dismutase (SOD), catalase, and glutathione peroxidase (GSH peroxidase) activities and thiobarbituric reactive substances (TBARS) were reduced, resulting in the reduction of glutamate-oxalate transaminase (GOT), glutamate-pyruvate transaminase (GPT) and lactic dehydrogenase (LDH) activities in plasma. Similar results of these enzymes and biochemical markers in both liver tissues and plasma were seen in ethanol-induced hepatotoxicity of SD rats. In addition, elevated alcohol dehydrogenase (ADH) activity and reduced expression of cytochrome p450 mixed monooxygenase enzyme (CYP2E1) were seen in liver tissues from ethanol-treated rats by LED treatment. These effects of LED were similar to those of Silymarin. In in vitro experiments, LED showed antioxidant activity in a 2,2-diphenyl-1-picrylhydrazyl (DPPH) system and mouse liver mitochondria system induced by NADPH/$Fe^{2+}$ and cumine hydroperoxide (CuOOH). These results indicate that LED protected SD rat hepatotoxicity, induced by $CCl_4$ and ethanol, through its antioxidative activity and might be useful as a material for protection from hepatoxicity in humans.

Exposure Assessments of Environmental Contaminants in Ansim Briquette Fuel Complex, Daegu(II) - Concentration distribution and exposure characteristics of TSP, PM10, PM2.5, and heavy metals - (대구 안심연료단지 환경오염물질 노출 평가(II) - TSP, PM10, PM2.5 및 중금속 농도분포 및 노출특성 -)

  • Jung, Jong-Hyeon;Phee, Young-Gyu;Lee, Jun-Jung;Oh, In-Bo;Shon, Byung-Hyun;Lee, Hyung-Don;Yoon, Mi-Ra;Kim, Geun-Bae;Yu, Seung-do;Min, Young-Sun;Lee, Kwan;Lim, Hyun-Sul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.3
    • /
    • pp.380-391
    • /
    • 2015
  • Objectives: The objective of this study is to assess airborne particulate matter pollution and its effect on health of residents living near Ansim Briquette Fuel Complex and its vicinities. Also, this study measured and analyzed the concentration of TSP, $PM_{10}$, $PM_{2.5}$, and heavy metals which influences on the environmental and respiratory disease in Ansim Briquette Fuel Complex, Daegu, Korea. Methods: In this study, we analyzed various environmental pollutants such as particulate matter and heavy metals from Ansim Briquette Fuel Complex that adversely affected local residents's health. In particular, we verified the concentration distribution and characteristics of exposure for TSP, $PM_{10}$, and $PM_{2.5}$ among particulate matters, and heavy metals(Cd, Cr, Cu, Mn, Ni, Pb, Fe, Zn, and Mg). In that regard, the official test method on air pollution in Korea for analysis of particulate matter and heavy metal in atmosphere were conducted. The large capacity air sampling method by the official test method on air pollution in Korea were applied for sampling of heavy metals in atmosphere. In addition, we evaluated the concentration of seasonal environmental pollutants for each point of residence in Ansim Briquette Fuel Complex and surrounding area. The sampling measured periods for air pollutants were from August 11, 2013 to February 21, 2014. Furthermore, we measured and analyzed the seasonal concentrations(summer, autumn and winter). Results: The average concentration for TSP, $PM_{10}$, and $PM_{2.5}$ by direct influence area at Ansim Briquette Fuel Complex were 1.7, 1.4 and 1.9 times higher than reference region. In analysis results of seasonal concentrations for particulate matter in four direct influence and reference area, concentration levels for winter were generally somewhat higher than concentrations for summer and autumn. The average concentrations for Cd, Cr, Mn, Ni, Pb, Fe, and Zn in direct influence area at Ansim Briquette Fuel Complex were $0.0008{\pm}0.0004{\mu}g/Sm^3$, $0.0141{\pm}0.0163{\mu}g/Sm^3$, $0.0248{\pm}0.0059{\mu}g/Sm^3$, $0.0026{\pm}0.0011{\mu}g/Sm^3$, $0.0272{\pm}0.0084{\mu}g/Sm^3$, $0.4855{\pm}0.1862{\mu}g/Sm^3$, and $0.3068{\pm}0.0631{\mu}g/Sm^3$, respectively. In particularly, the average concentrations for Cd, Cr, Mn, Ni, Pb, Fe, and Zn in direct influence area at Ansim Briquette Fuel Complex were 1.9, 3.6, 2.1, 1.9, 1.4, 2.6, and 1.2 times higher than reference area, respectively. The continuous monitoring and management were required for some heavy metals such as Cr and Ni. Moreover, the average concentration in winter for particulate matter in direct influence area at Ansim Briquette Fuel Complex were generally higher than concentrations in summer and autumn. Also, average concentrations for TSP, $PM_{10}$, and $PM_{2.5}$ were from 1.5 to 2.0 times, 1.2 to 1.8 times, and 1.1 to 2.3 times higher than reference area, respectively. In results for seasonal atmospheric environment, TSP, $PM_{10}$, $PM_{2.5}$, and heavy metal concentrations in direct influence area were higher than reference area. Especially, the concentrations in C station were a high level in comparison with other area. Conclusions: In the results, some particulate matters and heavy metals were relatively high concentration, in order to understand the environmental pollution level and health effect in surrounding area at Ansim Briquette Fuel Complex. The concentration of some heavy metals emitted from direct influence area at Ansim Briquette Fuel Complex were relatively higher than reference area. In particular, average concentration for heavy metals in this study were higher than average concentrations in air quality monitoring station for heavy metal for 7 years in Deagu metropolitan region. Especially, the residents near Ansim Briquette Fuel Complex may be exposed to the pollutants(TSP, $PM_{10}$, $PM_{2.5}$, and heavy metals, etc) emitted from the factories in Ansim Briquette Fuel Complex.

Studies on the physio-chemical properties and the cultivation of oyster mushroom(Pleurotus ostreatus) (느타리버섯의 생리화학적성질(生理化學的性質) 및 재배(栽培)에 관(關)한 연구(硏究))

  • Hong, Jai-Sik
    • Applied Biological Chemistry
    • /
    • v.21 no.3
    • /
    • pp.150-184
    • /
    • 1978
  • Nutritional characteristics and physio-chemical properties of mycelial growth and fruitbody formation of oyster mushroom(Pleurotus ostreatus)in synthetic media, the curtural condition for the commerical production in the rice straw and poplar sawdust media, and the changes of the chemical components of the media and mushroom during the cultivation were investigated. The results can be summarized as follows: 1. Among the carbon sources mannitol and sucrose gave rapid mycelial growth and rapid formation of fruit-body with higher yield, while lactose and rhamnose gave no mycelial growth. Also, citric acid, succinic acid, ethyl alcohol and glycerol gave poor fruit-body formation, and acetic acid, formic acid, fumaric acid, n-butyl alcohol, n-propyl alcohol and iso-butyl alcohol inhibited mycelial growth. 2. Among the nitrogen sources peptone gave rapid mycelial growth and rapid formation of fruit-body with higher yield, while D,L-alanine, asparatic acid, glycine and serine gave very poor fruit-body formation, and nitrite nitrogens, L-tryptophan and L-tyrosine inhibited mycelial growth. Inorganic nitrogens and amino acids added to peptone were effective for fruit-body growth, and thus addition of ammonium sulfate, ammonium tartarate, D,L-alanine and L-leucine resulted in about 10% increase fruit-body yield. L-asparic acid about 15%, L-arginine about 20%, L-glutamic acid, and L-lysine about 25%. 3. At C/N ratio of 15.23 fruit-body formation was fast, but the yield decreased, and at C/N ratio of 11.42 fruit-body formation was slow, but the yield increased. Also, at the same C/N ratio the higher the concentration of mannitol and petone, the higher yield was produced. Thus, from the view point of both yield of fruit-body and time required for fruiting the optimum C/N ratio would be 30. 46. 4. Thiamine, potassium dihydrogen phosphate and magnecium sulfate at the concentration of $50{\mu}g%$. 0.2% and 0.02-0.03%, respectively, gave excellent mycelial and fruit-body growth. Among the micronutrients ferrous sulfate, zinc sulfate and manganese sulfate showed synergetic growth promoting effect but lack of manganese resulted in a little reduction in mycelial and fruit-body growth. The optimum concentrati on of each these nutrients was 0.02mg%. 5. Cytosine and indole acetic acid at 0.2-1mg% and 0.01mg%, respectively, increased amount of mycelia, but had no effect on yield of fruit-body. The other purine and pyrimidine bases and plant hormones also had no effect on mycelial and fruit-belly yield. 6. Illumination inhibited mycelial growth, but illumination during the latter part of vegetative growth induced primordia formation. The optimum light intensity and exposure time was 100 to 500 lux and 6-12 hours per day, respectively. Higher intensity of light was injurous, and in darkness only vegetative growth without primordia formation was continued. 7. The optimum temperature for mycelial growth was $25^{\circ}C$ and for fruit-body formation 10 to $15^{\circi}C$. The optimum pH range was from 5.0 to 6.5. The most excellent fry it-body formation were produced from the mycelium grown for 7 to 10 days. The lesser the volume of media, the more rapid the formation of fruit-body; and the lower the yield of fruit-body; and the more the volume of media, the slower the formation of fruit-body, and the higher the yield of fruit-body. The primordia formation was inhibited by $CO_2$. 8. The optimum moisture content for mycelial growth was over 70% in the bottle media of rice straw and poplar sawdust. 10% addition of rice bran to the media exhibited excellent mycelial growth and fruit-body formation, and the addition of calciumcarbonate alone was effective, but the addition of calcium carbonate was ineffective in the presence of rice bran. 9. In the cultivation experiments the total yield of mushroom from the rice straw media was $14.99kg/m^2$, and from the sawdust media $6.52kg/m^2$, 90% of which was produced from the first and second cropping period. The total yield from the rice straw media was about 2.3 times as high as that from the sawdust media. 10. Among the chemical components of the media little change was observed in the content of ash on the dry weight basis, and organic matter content decreased as the cultivation progressed. Moisture content, which was about 79% at the time of spawning, decreased a little during the period of mycelial propagation, after which no change was observed. 11. During the period from spawning to the fourth cropping about 16.7% of the dry matter, about 19.3% of organic matter, and about 40% of nitrogen were lost from the rice straw media; about 7.5% of dry mallet, about 7.6% of organic matter, and about 20% of nitrogen were lost from the sawdust media. For the production of 1kg of mushroom about 232g of organic matter and about 7.0g of nitrogen were consumed from the rice straw media; about 235g of organic matter and about 6.8g of nitrogen were consumed from the sawdust media, 1㎏ of mushroom from either of media contains 82.4 and 82.3g of organic matter and 5.6 and 5.4g of nitrogen, respectively. 12. Total nitrogen content of the two media decreased gradually as the cultivation progressed, and total loss of insoluble nitrogen was greater than that of soluble nitrogen. Content of amino nitrogen continued to increase up to the third cropping time, after which it decreased. 13. In the rice straw media 28.0 and 13.8% of the total pentosan and ${\alpha}$-cellulose, respectively, lost during the whole cultivation period was lost during the period of mycelial growth; in the sawdust media 24.1 and 11.9% of the total pentosan and ${\alpha}$-cellulose, respectively, was lost during the period of mycelial growth. Lignin content in the media began to decrease slightly from the second cropping time, while the content of reduced sugar, trehalose and mannitol continued to increase. C/N ratio of the rice straw media decreased from 33.2 at spawining to 30.0 at ending; that of the sawdust media decreased from 61.3 to 60.0. 14. In both media phosphorus, potassium, manganese and zinc decreased, at magnesium, calcium and copper showed irregular changes, and iron had a tendency to be increased. 15. Enzyme activities are much higher in the rice straw media than in the sawdust media. CMC saccharifying and liquefying activity gradually increased from after mycelial propagation to the second cropping, after which it decreased in both media. Xylanase activity rapidly and greatly increased during the second cropping period rather than the first period. At the start of the third cropping period the activity decreased rapidly in the rice straw media, which was not observed in the sawdust media. Protease activity was highest after mycelial propagation, after which it gradually decreased. The pH of the rice straw media decreased from 6.3 at spawning to 5.0 after fourth cropping; that of the sawdust media decreased from 5.7 to 4.9. 16. The contents of all the components except crude fibre of the mushroom from the rice straw media were higher than those from the sawdust media. Little change was observed in the content of the components of mushroom cropped from the first to the third period, but slight decrease was noticed at the fourth cropping.

  • PDF