• Title/Summary/Keyword: Edward syndrome

Search Result 14, Processing Time 0.022 seconds

Prenatal diagnosis of a de novo ring chromosome 11

  • Park, Ju-Yeon;Lee, Moon-Hee;Lee, Bom-Yi;Lee, Yeon-Woo;Ryu, Hyun-Mee;Park, So-Yeon
    • Journal of Genetic Medicine
    • /
    • v.4 no.1
    • /
    • pp.80-83
    • /
    • 2007
  • A 36-year-old pregnant woman was referred for amniocentesis at 19.5 weeks gestation because of advanced maternal age and evidence of increased risk for Edward syndrome in the maternal serum screening test. Cytogenetic analysis of the cultured amniotic fluid cells revealed mosaicism for ring chromosome 11: 46,XX,r(11)[65]/ 45,XX,-11[16]/ 46,XX [34]. Parental karyotypes were normal. A targeted ultrasound showed intrauterine grow th restriction (IUGR). Cordocentesis was performed to characterize the ring chromosome and to rule out tissue specific mosaicism. Karyotype was confirmed as 46,XX,r(11) (p15.5q24.2)[229]/45,XX,-11[15]. And a few new form of ring w ere detected in this culture. The deletion of subtelomeric regions in the ring chromosome were detected by fluorescent in situ hybridization (FISH). The pregnancy was terminated. The fetal autopsy showed a growth-retarded female fetus with rocker bottom feet. We report a case of prenatally detected a de novo ring chromosome 11.

  • PDF

Green perilla leaf extract ameliorates long-term oxidative stress induced by a high-fat diet in aging mice

  • Edward, Olivet Chiamaka;Thomas, Shalom Sara;Cha, Kyung-Ok;Jung, Hyun-Ah;Han, Anna;Cha, Youn-Soo
    • Nutrition Research and Practice
    • /
    • v.16 no.5
    • /
    • pp.549-564
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Oxidative stress is caused by an imbalance between harmful free radicals and antioxidants. Long-term oxidative stress can lead to an "exhausted" status of antioxidant defense system triggering development of metabolic syndrome and chronic inflammation. Green perilla (Perilla frutescens) is commonly used in Asian cuisines and traditional medicine in southeast Asia. Green perilla possesses numerous beneficial effects including anti-inflammatory and antioxidant functions. To investigate the potentials of green perilla leaf extract (PE) on oxidative stress, we induced oxidative stress by high-fat diet (HFD) in aging mice. MATERIALS/METHODS: C57BL/6J male mice were fed HFD continuously for 53 weeks. Then, mice were divided into three groups for 12 weeks: a normal diet fed reference group (NDcon), high-fat diet fed group (HDcon), and high-fat diet PE treated group (HDPE, 400 mg/kg of body weight). Biochemical analyses of serum and liver tissues were performed to assess metabolic and inflammatory damage and oxidative status. Hepatic gene expression of oxidative stress and inflammation related enzymes were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: PE improved hepatopathology. PE also improved the lipid profiles and antioxidant enzymes, including hepatic glutathione peroxidase (GPx) and superoxide dismutase (SOD) and catalase (CAT) in serum and liver. Hepatic gene expressions of antioxidant and anti-inflammatory related enzymes, such as SOD-1, CAT, interleukin 4 (IL-4) and nuclear factor erythroid 2-related factor (Nrf2) were significantly enhanced by PE. PE also reduced the levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA) in the serum and liver; moreover, PE suppressed hepatic gene expression involved in pro-inflammatory response; Cyclooxygenase-2 (COX-2), nitric oxide synthase (NOS), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6). CONCLUSIONS: This research opens opportunities for further investigations of PE as a functional food and possible anti-aging agent due to its attenuative effects against oxidative stress, resulting from HFD and aging in the future.

The Progression of SARS Coronavirus 2 (SARS-CoV2): Mutation in the Receptor Binding Domain of Spike Gene

  • Sinae Kim;Jong Ho Lee;Siyoung Lee;Saerok Shim;Tam T. Nguyen;Jihyeong Hwang;Heijun Kim;Yeo-Ok Choi;Jaewoo Hong;Suyoung Bae;Hyunjhung Jhun;Hokee Yum;Youngmin Lee;Edward D. Chan;Liping Yu;Tania Azam;Yong-Dae Kim;Su Cheong Yeom;Kwang Ha Yoo;Lin-Woo Kang;Kyeong-Cheol Shin;Soohyun Kim
    • IMMUNE NETWORK
    • /
    • v.20 no.5
    • /
    • pp.41.1-41.11
    • /
    • 2020
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) is a positive-sense single-stranded RNA (+ssRNA) that causes coronavirus disease 2019 (COVID-19). The viral genome encodes twelve genes for viral replication and infection. The third open reading frame is the spike (S) gene that encodes for the spike glycoprotein interacting with specific cell surface receptor - angiotensin converting enzyme 2 (ACE2) - on the host cell membrane. Most recent studies identified a single point mutation in S gene. A single point mutation in S gene leading to an amino acid substitution at codon 614 from an aspartic acid 614 into glycine (D614G) resulted in greater infectivity compared to the wild type SARS-CoV2. We were interested in investigating the mutation region of S gene of SARS-CoV2 from Korean COVID-19 patients. New mutation sites were found in the critical receptor binding domain (RBD) of S gene, which is adjacent to the aforementioned D614G mutation residue. This specific sequence data demonstrated the active progression of SARS-CoV2 by mutations in the RBD of S gene. The sequence information of new mutations is critical to the development of recombinant SARS-CoV2 spike antigens, which may be required to improve and advance the strategy against a wide range of possible SARS-CoV2 mutations.

Polymorphisms of 5, 10-Methylentetrahydrofolate Reductase (MTHFR C677T) and Methionine Synthase Reductase (MTRR A66G) as Maternal Risk Factors for Fetal Aneuploidy (태아의 염색체의 수적 이상을 유발하는 모계 위험인자로서 5, 10-Methylentetrahydrofolate Reductase (MTHFR C677T)와 Methionine Synthase Reductase (MTRR A66G) 유전자의 다형성 연구)

  • Kim, Do-Jin;Kim, Shin-Young;Park, So-Yeon;Kim, Jin-Woo;Kim, Moon-Young;Han, Joung-Yeol;Yang, Jae-Hyug;Ahn, Hyun-Kyong;Choi, Jun-Seek;Chung, Jin-Hoon;Ryu, Hyun-Mee
    • Journal of Genetic Medicine
    • /
    • v.5 no.2
    • /
    • pp.119-124
    • /
    • 2008
  • Purpose: Aneuploidy is the cause of diseases such as Down syndrome or Edward syndrome and, more generally, is a major cause of mental retardation and fetal loss. The purpose of this study was to evaluate the association between MTHFR (C677T) or MTRR (A66G) polymorphisms and fetal aneuploidy. Materials and Methods: Data was collected from 37 women who had a fetus with aneuploidy (cases) and 78 women who had previously delivered at least two healthy children without aneuploidy and did not have a history of miscarriage or abnormal pregnancy (controls). The MTHFR (C677T) or MTRR (A66G) polymorphisms were analyzed by PCR-restriction fragment length polymorphism assay. Results: The frequencies of the MTHFR 677 CC, CT, and TT genotypes were 30.7%, 48.7%, and 20.6% in the control group and 37.8%, 48.6%, and 13.5% in the case group, respectively. There were no significant differences in genotype frequencies between the two groups. For the MTRR A66G polymorphism, the frequencies of the AA, AG and GG genotypes were 50%, 46.1%, and 3.9% in the control group and 13.5%, 81.1%, and 5.4% in case group, respectively. The frequency of the MTRR AG mutant was significantly increased in the case group, with an odds ratio of 6.5 (95% CI: 2.3-18.6, P<0.05). Conclusion: The results of this study suggest that mother carriers with the MTRR G allele have an increased risk of fetal aneuploidy, while the MTHFR T allele is not associated with increased risk of fetal aneuploidy. The MTRR A66G polymorphism may be a risk factor for producing a child with chromosomal aneuploidy.

  • PDF