문자열에 대한 편집 거리 문제는 하나의 문자열을 다른 문자열로 변환할 때 필요한 최소한의 연산의 개수를 구하는 문제이다. 영어와 같은 1차원 문자열에 대한 최적해에 대해서는 오랫동안 연구가 진행되어 왔으나, 한글과 같이 좀 더 복잡한 언어에 대한 편집 거리에 대해서는 많은 연구가 진행되지 못했다. 본 논문에서는 음소와 음절을 구분하여 편집거리를 구하는 기존 연구를 확장하여, 음소간의 유사도를 정의하고 이를 이용하여 유사한 단어를 더 정확하게 구분해 내는 알고리즘을 제안한다.
Edit distance metrics are widely used for many applications such as string comparison and spelling error corrections. Hamming distance is a metric for two equal length strings and Damerau-Levenshtein distance is a well-known metrics for making spelling corrections through string-to-string comparison. Previous distance metrics seems to be appropriate for alphabetic languages like English and European languages. However, the conventional edit distance criterion is not the best method for agglutinative languages like Korean. The reason is that two or more letter units make a Korean character, which is called as a syllable. This mechanism of syllable-based word construction in the Korean language causes an edit distance calculation to be inefficient. As such, we have explored a new edit distance method by using consonant normalization and the normalization factor.
문자열에 대한 편집 거리 문제는 하나의 문자열을 다른 문자열로 변환할 때 필요한 최소한의 연산의 개수를 구하는 문제이다. 편집 거리 문제는 오랫동안 연구가 진행되어 왔으며, 영어와 같이 1차원 문자열에 대해서는 최적해를 찾는 여러 가지 알고리즘이 개발되어 왔다. 그러나 한글 또는 한자와 같이 좀 더 복잡한 언어에 대한 편집 거리에 대해서는 많은 연구가 진행되지 못했다. 본 논문에서는 한글이 갖는 특징을 반영한 편집 거리를 정의하고, 한글 문자열에 대한 편집 거리를 구하는 알고리즘을 제안한다.
대부분의 스마트폰은 터치패드 기반의 가상 키패드를 사용한다. 가상 키패드는 기기의 화면 크기나 입력 방법의 물리적인 한계로 입력 오류가 자주 발생한다. 이 문제를 해결하기 위해 유사 단어를 찾기 위한 많은 연구가 있었다. 본 논문에서는 편집 거리 방법을 다양한 가상 키패드를 고려하여 수정하는 방법을 제안한다. 제안 방법은 다양한 키패드에서 발생하는 입력 오류를 효과적으로 해결하기 위해, 입력 문자열을 사용자가 실제 누르게 되는 입력열로 변환하고, 가상 키패드의 특성에 따라 편집 비용을 수정하였다. 다양한 키패드에서 실험한 결과 제안 방법이 일반적인 편집 거리 방법을 이용한 것 보다 좋은 성능을 보였다.
근사문자열매칭 문제는 다양한 분야에서 연구되어 왔다. 최근에는 차세대염기서열분석의 비용과 시간을 줄이기 위해 빠른 근사문자열매칭 알고리즘들이 이용되고 있다. 근사문자열매칭은 문자열들의 오차를 측정하기 위해 편집거리와 같은 거리함수를 이용한다. 알파벳 ${\Sigma}$에 대한 길이가 각각 m, n인 두 문자열 X와 Y의 편집거리는 X를 Y로 변환하기 위해 필요한 최소 편집연산의 수로 정의된다. 두 문자열의 편집거리는 잘 알려진 동적프로그래밍을 이용하여 O(mn) 시간과 공간에 계산할 수 있으며, 4-러시안 알고리즘을 이용해서도 계산할 수 있다. 4-러시안 알고리즘은 블록 크기를 t라 할 때, 전처리 단계에서 $O((3{\mid}{\Sigma}{\mid})^{2t}t^2)$ 시간과 $O((3{\mid}{\Sigma}{\mid})^{2t}t)$ 공간이 필요하며, 계산 단계에서 O(mn/t) 시간과 O(mn) 공간을 이용하여 편집거리를 계산하는 알고리즘이다. 본 논문에서는 4-러시안 알고리즘의 계산 단계를 병렬화하고 실험을 통해 CPU 기반의 순차적 알고리즘과 CUDA로 구현한 GPU 기반의 병렬 알고리즘의 수행시간을 비교한다. 본 논문에서 제시하는 4-러시안 알고리즘의 계산단계는 m/t개의 쓰레드를 사용하여 O(m+n) 시간에 편집거리를 계산한다. GPU 기반의 알고리즘이 CPU 기반의 알고리즘 보다 t = 1일 때 약 10배 빠르고, t = 2일 때 약 3배 빠른 결과를 보였다.
In this paper, we propose solutions to resolve the problem of many spelling variants and the problem of lack of annotated corpus for training, which are two among the main difficulties in named entity recognition in biomedical domain. To resolve the problem of spotting valiants, we propose a use of edit-distance as a feature for SVM. And we propose a use of virtual examples to automatically expand the annotated corpus to resolve the lack-of-corpus problem. Using virtual examples, the annotated corpus can be extended in a fast, efficient and easy way. The experimental results show that the introduction of edit-distance produces some improvements in protein name recognition performance. And the model, which is trained with the corpus expanded by virtual examples, outperforms the model trained with the original corpus. According to the proposed methods, we finally achieve the performance 75.80 in F-measure(71.89% in precision,80.15% in recall) in the experiment of protein name recognition on GENIA corpus (ver.3.0).
전산 시스템에 대한 침입에 대응하기 위하여 시스템 호출 감사자료 척도를 사용하여 은닉 마르코프 모델(HMM)에 적용하는 비정상행위 기반 침입탐지 시스템에 대한 연구가 활발하다. 하지만, 이는 일정한 임계간 이하의 비정상행위만을 감지할 뿐, 어떠한 유형의 침입인지를 판별하지 못한다. 이에 Viterbi 알고리즘을 이용하여 상태 시퀀스를 분석하고, 공격 유형별 표준 상태시퀀스와의 유사성을 측정하여 유형을 판별할 수 있는데, 외부 혹은 내부 환경에 따라 상태 시퀀스가 항상 규칙적으로 추출될 수 없기 때문에, 단순 매칭으로 침입 유형을 판별하기가 어렵다. 본 논문에서는 이러한 문제를 해결하기 위하여 시퀀스의 변형을 효과적으로 고려하는 편집거리(Edit distance)를 이용하여 어떠한 유형의 침입이 발생하였는지를 판별하는 방법을 제안한다. 본 논문에서는 루트권한을 취득하기 위한 대표적인 침입유형으로 가장 널리 쓰이는 버퍼오버플로우 공격에 대해 실험하였는데, 그 결과 세부적인 침입 유형을 잘 판별할 수 있음을 확인하였다.
알파벳 ${\Sigma}$로 구성된 길이가 각각 m, n인 두 문자열 X, Y가 주어졌을 때, X, Y의 확장편집거리는 동적프로그래밍을 이용하여 O(mn) 시간과 공간을 계산할 수 있다. 최근 m개의 쓰레드를 이용하여 O(m+n) 시간과 O(mn) 공간을 사용하여 X, Y의 확장편집거리를 계산하는 병렬알고리즘이 제시되었다. 본 논문에서는 GPU의 공유메모리를 활용하여 수행시간을 개선한 병렬알고리즘을 제시한다. 실험 결과, 개선된 병렬알고리즘이 기존의 병렬알고리즘보다 약 19~25배 이상 빠른 수행시간을 보였다.
음성 상호작용은 스마트 기기의 활용에 능숙하지 못한 디지털 소외계층을 대상으로 하는 애플리케이션에서 특히 효과적이다. 그러나 공개 API를 기반으로 한 애플리케이션들은 기존의 터치스크린 중심의 UI와 제공되는 API의 한계로 인해 음성 신호를 짧고 단편적인 입출력에만 활용하고 있다. 본 논문에서는 사용자와 지능형 모바일/IoT 애플리케이션의 대화형 음성 상호작용 모델을 설계하고, 편집 거리(Levenshtein distance) 기반 키워드 탐지 기법을 제안한다. 제안 모델 및 기법은 안드로이드 환경에서 구현되었으며, 편집 거리 기반 키워드 탐지 기법은 음성인식을 통해 부정확하게 인식된 키워드에 대해 기존 기법보다 높은 인식률을 보였다.
빅 데이터 시대에 접어들면서 저장 기술과 처리 기술이 급속도로 발전함에 따라, 과거에는 간과되었던 롱테일(long tail) 데이터가 많은 기업과 연구자들에게 관심의 대상이 되고 있다. 본 연구는 롱테일 법칙의 영역에 존재하는 데이터의 활용률을 높이기 위해 텍스트 마이닝 기반의 기술 용어 네트워크 생성 및 통제 기법을 제안한다. 특히 텍스트 마이닝의 편집 거리(edit distance) 기법을 이용해 학문분야에서 사용되는 기술 용어의 상호 네트워크를 자동으로 생성하는 효과적인 방안을 제시하였다. 데이터의 활용률 향상 실험을 위한 데이터 수집을 위해 LOD(linked open data) 환경을 이용하였으며, 이 과정에서 효과적으로 LOD 시스템의 데이터를 활용하는 기법과 용어의 패턴 처리 알고리즘을 제안하였다. 마지막으로, 생성된 기술 용어 네트워크의 성능 측정을 통해 제안한 기법이 롱테일 데이터의 활용률 제고에 효과적이었음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.