• Title/Summary/Keyword: Edge crack

Search Result 338, Processing Time 0.028 seconds

ON THE TREATMENT OF DUCTILE FRACTURE BY THE LOCAL APPROACH CONCEPT IN CONTINUUM DAMAGE MECHANICS : THEORY AND EXAMPLE

  • Kim, Seoung-Jo;Kim, Jin-Hee;Kim, Wie-Dae
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.2 no.1
    • /
    • pp.31-50
    • /
    • 1996
  • In this paper, a finite element analysis based on the local approach concept to fracture in the continuum damage mechanics is performed to analyze ductile fracture in two dimensional quasi-static state. First an isotropic damage model based on the generalized concept of effective stress is proposed for structural materials in the context of large deformation. In this model, the stiffness degradation is taken as a measure of damage and so, the fracture phenomenon can be explained as the critical deterioration of stiffness at a material point. The modified Riks' continuation technique is used to solve incremental iterative equations. Crack propagation is achieved by removing critically damaged elements. The mesh size sensitivity analysis and the simulation of the well known shearing mode failure in plane strain state are carried out to verify the present formulation. As numerical examples, an edge cracked plate and the specimen with a circular hole under plane stress are taken. Load-displacement curves and successively fractured shapes are shown. From the results, it can be concluded that the proposed model based on the local approach concept in the continuum damage mechanics may be stated as a reasonable tool to explain ductile fracture initiation and crack propagation.

Fatigue life prediction for radial truck tires using a global-local finite element method

  • Jeong, Kyoung Moon;Beom, Hyeon Gyu;Kim, Kee-Woon;Cho, Jin-Rae
    • Interaction and multiscale mechanics
    • /
    • v.4 no.1
    • /
    • pp.35-47
    • /
    • 2011
  • A global-local finite element modeling technique is employed in this paper to predict the fatigue life of radial truck tires. This paper assumes that a flaw exists inside the tire, in the local model. The local model uses an FEM fracture analysis in conjunction with a global-local technique in ABAQUS. A 3D finite element local model calculates the energy release rate at the belt edge. Using the analysis of the local model, a study of the energy release rate is performed in the crack region and used to determine the crack growth rate analysis. The result considers how different driving conditions contribute to the detrimental effects of belt separation in truck tire failure. The calculation of the total mileage on four sizes of radial truck tires has performed on the belt edge separation. The effect of the change of belt width design on the fatigue lifetime of tire belt separation is discussed.

A Modified Two-Parameter Solution for Crack-Tip Field in Bending Dominated Specimens

  • Jang Seok-Ki;Zhu Xian Kui
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.494-504
    • /
    • 2006
  • It is well known that the two-parameter $J-A_2$ solution can well characterize the crack-tip fields and quantify the crack-tip constraint for different flawed geometries in variety of loading conditions. However, this solution fails to do so for bending dominated specimens or geometries at large deformation because of the influence of significant global bending stress on the crack-tip field. To solve this issue, a modified $J-A_2$ solution is developed in this paper by introducing an additional term to address the global bending influence. Using the $J_2$ flow theory of plasticity and within the small-strain framework detailed finite element analyses are carried out for the single edge notched bend (SENB) specimen with a deep crack in A533B steel at different deformation levels ranging from small-scale Yielding to large-scale Yielding conditions. The numerical results of the crack-tip stress field are then compared with those determined from the $J-A_2$ solution and from the modified $J-A_2$ solution at the same level of applied loading Results indicate that the modified $J-A_2$ solution largely improves the $J-A_2$ solution, and match very well with the numerical results in the region of interest at all deformation levels. Therefore, the proposed solution can effectively describe the crack-tip field and the constraint for bending dominated specimens or geometries.

Fatigue Crack Growth Characteristics of $SiC_p/Al-Si$ Alloy Composites for Automotive Structures (자동차구조용 $SiC_p/Al-Si$복합재의 피로균열 진전특성에 대한 연구)

  • Koh Seungkee;Lee Haemoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.174-181
    • /
    • 2005
  • In order to investigate the behavior of fatigue crack growth of SiC-particulate- reinforced Al-Si alloy composites, fatigue tests using single edge notched tension(SENT) specimens were performed. Composite materials were manufactured by using both permanent die casting and extrusion processes with different volume fractions of $10\%\;and\;20\%$. $SiC_p-reinfurced$ Al-Si composites showed the increased levels of threshold stress intensity factor range, ${\Delta}K_{th}$, for the increased volume fractions of SiC particles, which implies the increased fatigue crack growth resistance at the threshold or low ${\Delta}K$ levels, compared to the unreinforced Al-Si alloy. In the Paris region, however, the composites showed the increased rate of crack growth resulting in the unfavorable effects on the fatigue crack growth resistance. Critical stress intensity factor range at unstable crack growth leading to final fracture decreased as the volume fraction of SiC particle increased, because of the reduced fracture toughness of the composites. Extruded materials showed higher threshold and critical values than the cast materials.

Fracture mechanical evaluation of fatigue strength of a single spot welded lap joint under tension-shear load (인장-전단하중을 받는 일점 Spot용접재의 파괴역학적 피로강도 평가)

  • 배동호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.42-50
    • /
    • 1991
  • According as the members and inner and outer plates of the automobile body structure have been thinned their thickness and have become high strength, each part of the body structure has been put more severe stress condition. Therefore, it has been increasingly required to improve the fatigue strength of the spot welded structures. As one of the improving methods for such problem, the author had previously proposed the method of alleviating stress concentration at nugget edge of the spot weld part and improving its fatigue strength [1]. But, because fatigue strength of the spot welded lap joint is influenced by its geometrical and mechanical factors, welding condition and etc., there needs a quantitative and systematic estimation method of them. In this report, by considering nugget edge of the spot weld part of the spot welded lap joint subjected to tensile load to the ligament crack, fatigue strength of various spot welded lap joints was estimated with the stress intensity factor (S.I.F.) K which is fracture mechanical parameter. It is known that evaluation of fatigue strength of the spot welded lap joint by the stress intensity factor (S.I.F.) K is more effective than the maximum stress $(\sigma_{ymax}$) at edge of the spot weld part on the center line of width of the plate.

  • PDF

A transfer matrix method for in-plane bending vibrations of tapered beams with axial force and multiple edge cracks

  • Lee, Jung Woo;Lee, Jung Youn
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.125-138
    • /
    • 2018
  • This paper proposes a transfer matrix method for the bending vibration of two types of tapered beams subjected to axial force, and it is applied to analyze tapered beams with an edge or multiple edge open cracks. One beam type is assumed to be reduced linearly in the cross-section height along the beam length. The other type is a tapered beam in which the cross-section height and width with the same taper ratio is linearly reduced simultaneously. Each crack is modeled as two sub-elements connected by a rotational spring, and the method can evaluate the effect of cracking on the desired number of eigenfrequencies using a minimum number of subdivisions. Among the power series available for the solutions, the roots of the differential equation are computed using the Frobenius method. The computed results confirm the accuracy of the method and are compared with previously reported results. The effectiveness of the proposed methods is demonstrated by examining specific examples, and the effects of cracking and axial loading are carefully examined by a comparison of the single and double tapered beam results.

Image-based Extraction of Histogram Index for Concrete Crack Analysis

  • Kim, Bubryur;Lee, Dong-Eun
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.912-919
    • /
    • 2022
  • The study is an image-based assessment that uses image processing techniques to determine the condition of concrete with surface cracks. The preparations of the dataset include resizing and image filtering to ensure statistical homogeneity and noise reduction. The image dataset is then segmented, making it more suited for extracting important features and easier to evaluate. The image is transformed into grayscale which removes the hue and saturation but retains the luminance. To create a clean edge map, the edge detection process is utilized to extract the major edge features of the image. The Otsu method is used to minimize intraclass variation between black and white pixels. Additionally, the median filter was employed to reduce noise while keeping the borders of the image. Image processing techniques are used to enhance the significant features of the concrete image, especially the defects. In this study, the tonal zones of the histogram and its properties are used to analyze the condition of the concrete. By examining the histogram, the viewer will be able to determine the information on the image through the number of pixels associated and each tonal characteristic on a graph. The features of the five tonal zones of the histogram which implies the qualities of the concrete image may be evaluated based on the quality of the contrast, brightness, highlights, shadow spikes, or the condition of the shadow region that corresponds to the foreground.

  • PDF

Estimation of Transient Creep Crack-tip Stress Fields for SE(B) specimen under Elastic-Plastic-Creep Conditions (탄성-소성-크리프 상태에서 SE(B) 시편의 천이크리프 균열 선단 응력장 평가)

  • Lee, Han-Sang;Je, Jin-Ho;Kim, Dong-Jun;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.1001-1010
    • /
    • 2015
  • This paper estimates the time-dependent crack-tip stress fields under elastic-plastic-creep conditions. We perform Finite-Element (FE) transient creep analyses for a Single-Edge-notched-Bend (SEB) specimen. We investigate the effect of the initial plasticity on the transient creep by systematically varying the magnitude of the initial step-load. We consider both the same stress exponent and different stress exponent in the power-law creep and plasticity to determine the elastic-plastic-creep behaviour. To estimation of the crack-tip stress fields, we compare FE analysis results with those obtained numerically formulas. In addition, we propose a new equation to predict the crack-tip stress fields when the creep exponent is different from the plastic exponent.

Dislocation in Semi-infinite Half Plane Subject to Adhesive Complete Contact with Square Wedge: Part II - Approximation and Application of Corrective Functions (직각 쐐기와 응착접촉 하는 반무한 평판 내 전위: 제2부 - 보정 함수의 근사 및 응용)

  • Kim, Hyung-Kyu
    • Tribology and Lubricants
    • /
    • v.38 no.3
    • /
    • pp.84-92
    • /
    • 2022
  • In Part I, developed was a method to obtain the stress field due to an edge dislocation that locates in an elastic half plane beneath the contact edge of an elastically similar square wedge. Essential result was the corrective functions which incorporate a traction free condition of the free surfaces. In the sequel to Part I, features of the corrective functions, Fkij,(k = x, y;i,j = x,y) are investigated in this Part II at first. It is found that Fxxx(ŷ) = Fxyx(ŷ) where ŷ = y/η and η being the location of an edge dislocation on the y axis. When compared with the corrective functions derived for the case of an edge dislocation at x = ξ, analogy is found when the indices of y and x are exchanged with each other as can be readily expected. The corrective functions are curve fitted by using the scatter data generated using a numerical technique. The algebraic form for the curve fitting is designed as Fkij(ŷ) = $\frac{1}{\hat{y}^{1-{\lambda}}I+yp}$$\sum_{q=0}^{m}{\left}$$\left[A_q\left(\frac{\hat{y}}{1+\hat{y}} \right)^q \right]$ where λI=0.5445, the eigenvalue of the adhesive complete contact problem introduced in Part I. To investigate the exponent of Fkij, i.e.(1 - λI) and p, Log|Fkij|(ŷ)-Log|(ŷ)| is plotted and investigated. All the coefficients and powers in the algebraic form of the corrective functions are obtained using Mathematica. Method of analyzing a surface perpendicular crack emanated from the complete contact edge is explained as an application of the curve-fitted corrective functions.

Stress intensity factors for periodic edge cracks in a semi-infinite medium with distributed eigenstrain

  • Afsar, A.M.;Ahmed, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.1
    • /
    • pp.67-82
    • /
    • 2005
  • This study analyzes stress intensity factors for a number of periodic edge cracks in a semiinfinite medium subjected to a far field uniform applied load along with a distribution of eigenstrain. The eigenstrain is considered to be distributed arbitrarily over a region of finite depth extending from the free surface. The cracks are represented by a continuous distribution of edge dislocations. Using the complex potential functions of the edge dislocations, a simple as well as effective method is developed to calculate the stress intensity factor for the edge cracks. The method is employed to obtain the numerical results of the stress intensity factor for different distributions of eigenstrain. Moreover, the effect of crack spacing and the intensity of the normalized eigenstress on the stress intensity factor are investigated in details. The results of the present study reveal that the stress intensity factor of the periodic edge cracks is significantly influenced by the magnitude as well as distribution of the eigenstrain within the finite depth. The eigenstrains that induce compressive stresses at and near the free surface of the semi-infinite medium reduce the stress intensity factor that, in turn, contributes to the toughening of the material.