• Title/Summary/Keyword: Edge computing.

Search Result 510, Processing Time 0.027 seconds

Heterogeneous Sensor Data Analysis Using Efficient Adaptive Artificial Neural Network on FPGA Based Edge Gateway

  • Gaikwad, Nikhil B.;Tiwari, Varun;Keskar, Avinash;Shivaprakash, NC
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.4865-4885
    • /
    • 2019
  • We propose a FPGA based design that performs real-time power-efficient analysis of heterogeneous sensor data using adaptive ANN on edge gateway of smart military wearables. In this work, four independent ANN classifiers are developed with optimum topologies. Out of which human activity, BP and toxic gas classifier are multiclass and ECG classifier is binary. These classifiers are later integrated into a single adaptive ANN hardware with a select line(s) that switches the hardware architecture as per the sensor type. Five versions of adaptive ANN with different precisions have been synthesized into IP cores. These IP cores are implemented and tested on Xilinx Artix-7 FPGA using Microblaze test system and LabVIEW based sensor simulators. The hardware analysis shows that the adaptive ANN even with 8-bit precision is the most efficient IP core in terms of hardware resource utilization and power consumption without compromising much on classification accuracy. This IP core requires only 31 microseconds for classification by consuming only 12 milliwatts of power. The proposed adaptive ANN design saves 61% to 97% of different FPGA resources and 44% of power as compared with the independent implementations. In addition, 96.87% to 98.75% of data throughput reduction is achieved by this edge gateway.

Lane Model Extraction Based on Combination of Color and Edge Information from Car Black-box Images (차량용 블랙박스 영상으로부터 색상과 에지정보의 조합에 기반한 차선모델 추출)

  • Liang, Han;Seo, Suyoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • This paper presents a procedure to extract lane line models using a set of proposed methods. Firstly, an image warping method based on homography is proposed to transform a target image into an image which is efficient to find lane pixels within a certain region in the image. Secondly, a method to use the combination of the results of edge detection and HSL (Hue, Saturation, and Lightness) transform is proposed to detect lane candidate pixels with reliability. Thirdly, erroneous candidate lane pixels are eliminated using a selection area method. Fourthly, a method to fit lane pixels to quadratic polynomials is proposed. In order to test the validity of the proposed procedure, a set of black-box images captured under varying illumination and noise conditions were used. The experimental results show that the proposed procedure could overcome the problems of color-only and edge-only based methods and extract lane pixels and model the lane line geometry effectively within less than 0.6 seconds per frame under a low-cost computing environment.

The Edge Computing System for the Detection of Water Usage Activities with Sound Classification (음향 기반 물 사용 활동 감지용 엣지 컴퓨팅 시스템)

  • Seung-Ho Hyun;Youngjoon Chee
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.147-156
    • /
    • 2023
  • Efforts to employ smart home sensors to monitor the indoor activities of elderly single residents have been made to assess the feasibility of a safe and healthy lifestyle. However, the bathroom remains an area of blind spot. In this study, we have developed and evaluated a new edge computer device that can automatically detect water usage activities in the bathroom and record the activity log on a cloud server. Three kinds of sound as flushing, showering, and washing using wash basin generated during water usage were recorded and cut into 1-second scenes. These sound clips were then converted into a 2-dimensional image using MEL-spectrogram. Sound data augmentation techniques were adopted to obtain better learning effect from smaller number of data sets. These techniques, some of which are applied in time domain and others in frequency domain, increased the number of training data set by 30 times. A deep learning model, called CRNN, combining Convolutional Neural Network and Recurrent Neural Network was employed. The edge device was implemented using Raspberry Pi 4 and was equipped with a condenser microphone and amplifier to run the pre-trained model in real-time. The detected activities were recorded as text-based activity logs on a Firebase server. Performance was evaluated in two bathrooms for the three water usage activities, resulting in an accuracy of 96.1% and 88.2%, and F1 Score of 96.1% and 87.8%, respectively. Most of the classification errors were observed in the water sound from washing. In conclusion, this system demonstrates the potential for use in recording the activities as a lifelog of elderly single residents to a cloud server over the long-term.

The Enhancement of the Boundary-Based Depth Image (경계 기반의 깊이 영상 개선)

  • Ahn, Yang-Keun;Hong, Ji-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.4
    • /
    • pp.51-58
    • /
    • 2012
  • Recently, 3D technology based on depth image is widely used in various fields including 3D space recognition, image acquisition, interaction, and games. Depth camera is used in order to produce depth image, various types of effort are made to improve quality of the depth image. In this paper, we suggests using area-based Canny edge detector to improve depth image in applying 3D technology based on depth camera. The suggested method provides improved depth image with pre-processing and post-processing by fixing image quality deterioration, which may take place in acquiring depth image in a limited environment. For objective image quality evaluation, we have confirmed that the image is improved by 0.42dB at maximum, by applying and comparing improved depth image to virtual view reference software. In addition, with DSCQS(Double Stimulus Continuous Quality Scale) evaluation method, we are reassured of the effectiveness of improved depth image through objective evaluation of subjective quality.

Improved Broadcast Algorithm in Distributed Heterogeneous Systems (이질적인 분산 시스템에서의 개선된 브로드캐스트 알고리즘)

  • 박재현;김성천
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.3
    • /
    • pp.11-16
    • /
    • 2004
  • Recently, collaborative works are increased more and more over the distributed heterogeneous computing environments. The availability of high-speed wide-area networks has also enabled collaborative multimedia applications such as video conferencing, distributed interactive simulation and collaborative visualization. Distributed high performance computing and collaborative multimedia applications, it is extremely important to efficiently perform group communication over a heterogeneous network. Typical group communication patterns are broadcast and Multicast. Heuristic algorithms such as FEF, ECEF, look-ahead make up the message transmission tree for the broadcast and multicast over the distributed heterogeneous systems. But, there are some shortcomings because these select the optimal solution at each step, it may not be reached to the global optimum In this paper, we propose a new heuristic algerian that constructs tree for efficiently collective communication over the previous heterogeneous communication model which has heterogenity in both node and network. The previous heuristic algorithms my result in a locally optimal solution, so we present more reasonable and available criterion for choosing edge. Through the performance evaluation over the various communication cost, improved heuristic algorithm we proposed have less completion time than previous algorithms have, especially less time complexity than look-ahead approach.

Investigation of Research Trends in the D(Data)·N(Network)·A(A.I) Field Using the Dynamic Topic Model (다이나믹 토픽 모델을 활용한 D(Data)·N(Network)·A(A.I) 중심의 연구동향 분석)

  • Wo, Chang Woo;Lee, Jong Yun
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.9
    • /
    • pp.21-29
    • /
    • 2020
  • The Topic Modeling research, the methodology for deduction keyword within literature, has become active with the explosion of data from digital society transition. The research objective is to investigate research trends in D.N.A.(Data, Network, Artificial Intelligence) field using DTM(Dynamic Topic Model). DTM model was applied to the 1,519 of research projects with SW·A.I technology classifications among ICT(Information and Communication Technology) field projects between 6 years(2015~2020). As a result, technology keyword for D.N.A. field; Big data, Cloud, Artificial Intelligence, extended keyword; Unstructured, Edge Computing, Learning, Recognition was appeared every year, and accordingly that the above technology is being researched inclusively from other projects can be inferred. Finally, it is expected that the result from this paper become useful for future policy·R&D planning and corporation's technology·marketing strategy.

Comparison of Search Performance of SQLite3 Database by Linux File Systems (Linux File Systems에 따른 SQLite3 데이터베이스의 검색 성능 비교)

  • Choi, Jin-Oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • Recently, IoT sensors are often used to produce stream data locally and they are provided for edge computing applications. Mass-produced data are stored in the mobile device's database for real-time processing and then synchronized with the server when needed. Many mobile databases are developed to support those applications. They are CloudScape, DB2 Everyplace, ASA, PointBase Mobile, etc, and the most widely used database is SQLite3 on Linux. In this paper, we focused on the performance required for synchronization with the server. The search performance required to retrieve SQLite3 was compared and analyzed according to the type of each Linux file system in which the database is stored. Thus, performance differences were checked for each file system according to various search query types, and criteria for applying the more appropriate Linux file system according to the index use environment and table scan environment were prepared and presented.

Design of visitor counting system using edge computing method

  • Kim, Jung-Jun;Kim, Min-Gyu;Kim, Ju-Hyun;Lee, Man-Gi;Kim, Da-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.7
    • /
    • pp.75-82
    • /
    • 2022
  • There are various exhibition halls, shopping malls, theme parks around us and analysis of interest in exhibits or contents is mainly done through questionnaires. These questionnaires are mainly depend on the subjective memory of the person being investigated, resulting in incorrect statistical results. Therefore, it is possible to identify an exhibition space with low interest by tracking the movement and counting the number of visitors. Based on this, it can be used as quantitative data for exhibits that need replacement. In this paper, we use deep learning-based artificial intelligence algorithms to recognize visitors, assign IDs to the recognized visitors, and continuously track them to identify the movement path. When visitors pass the counting line, the system is designed to count the number and transmit data to the server for integrated management.

Machine Learning-based Optimal VNF Deployment Prediction (기계학습 기반 VNF 최적 배치 예측 기술연구)

  • Park, Suhyun;Kim, Hee-Gon;Hong, Jibum;Yoo, Jae-Hyung;Hong, James Won-Ki
    • KNOM Review
    • /
    • v.23 no.1
    • /
    • pp.34-42
    • /
    • 2020
  • Network Function Virtualization (NFV) environment can deal with dynamic changes in traffic status with appropriate deployment and scaling of Virtualized Network Function (VNF). However, determining and applying the optimal VNF deployment is a complicated and difficult task. In particular, it is necessary to predict the situation at a future point because it takes for the process to be applied and the deployment decision to the actual NFV environment. In this paper, we randomly generate service requests in Multiaccess Edge Computing (MEC) topology, then obtain training data for machine learning model from an Integer Linear Programming (ILP) solution. We use the simulation data to train the machine learning model which predicts the optimal VNF deployment in a predefined future point. The prediction model shows the accuracy over 90% compared to the ILP solution in a 5-minute future time point.

A Study on MEC Network Application Functions for Autonomous Driving (자율주행을 위한 MEC 적용 기능의 연구)

  • Kang-Hyun Nam
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.3
    • /
    • pp.427-432
    • /
    • 2023
  • In this study, MEC (: Multi-access Edge Computing) proposes a cloud service network configuration for various tests of autonomous vehicles to which V2X (: Vehicle to Everything) is applied in Wave, LTE, and 5G networks and MEC App (: Application) applied V2X service function test verification of two domains (operator (KT, SKT, LG U+), network type (Wave, LTE (including 3G), 5G)) in a specific region. In 4G networks of domestic operators (SKT, KT, LG U+ and Wave), MEC summarized the improvement effects through V2X function blocks and traffic offloading for the purpose of bringing independent network functions. And with a high level of QoS value in the V2X VNF of the 5G network, the traffic steering function scenario was demonstrated on the destination-specific traffic path.