In this paper, we propose a block-based modularity architecture design method for distributed machine learning. The proposed architecture is a block-type module structure with various machine learning algorithms. It allows free expansion between block-type modules and allows multiple machine learning algorithms to be organically interlocked according to the situation. The architecture enables open data communication using the metadata query protocol. Also, the architecture makes it easy to implement an application service combining various edge computing devices by designing a communication method suitable for surrounding applications. To confirm the interlocking between the proposed block-type modules, we implemented a hardware-based modularity application system.
Karami, Mojtaba;Safabakhsh, Reza;Rahmati, Mohammad
ETRI Journal
/
제35권2호
/
pp.207-217
/
2013
This paper introduces the modular cellular neural network (CNN), which is a new CNN structure constructed from nine one-layer modules with intercellular interactions between different modules. The new network is suitable for implementing many image processing operations. Inputting an image into the modules results in nine outputs. The topographic characteristic of the cell interactions allows the outputs to introduce new properties for image processing tasks. The stability of the system is proven and the performance is evaluated in several image processing applications. Experiment results on texture segmentation show the power of the proposed structure. The performance of the structure in a real edge detection application using the Berkeley dataset BSDS300 is also evaluated.
Mobile Edge Computing(MEC)은 무선 기지국에 분산 클라우드 컴퓨팅 기술을 적용하여 다양한 서비스와 캐싱 콘텐츠를 이용자 단말에 가까이 전개함으로써 모바일 코어망의 혼잡을 완화하고, 새로운 로컬 서비스를 창출하는 기술이다. 현재는 European Telecommunications Standards Institute(ETSI)주도로 규격 작업이 진행되고 있으며, 동시에 산업계에서는 LTE 모바일 네트워크에 적용하는 시도들이 이루어지고 있다. 그러나 MEC기술은 Software Defined Network(SDN)/Network Functions Virtualization(NFV) 기술들과 함께 향후 2020년대에 도입될 5G 네트워크의 주요 구성 기술로서 부상하고 있다. 본고에서는 MEC의 개념과 다양한 서비스 시나리오, MEC 플랫폼 구조 및 기술동향 등을 살펴보고, 5G에서의 역할과 앞으로 도전하여야 할 기술적인 과제들에 대하여 분석한다.
Motivating by two promising technique of 5G, namely D2D and Edge computing, and the above mentioned problem of the current joint studies, We believe that more study is needed on the benefits of joining these two techniques in a single framework by more precisely taking into account the energy needed to computation, sending data, receiving data and as a result achieving more realistic energy efficiency in 5G cellular networks.
We implemented a real-time cloud robotics application by offloading robot navigation engine over to 5G Mobile Edge Computing (MEC) sever. We also ran a fleet management system (FMS) in the server and controlled the movements of multiple robots at the same time. The mobile robots under the test were connected to the server through 5G SA network. Public 5G network, which is already commercialized, has been temporarily modified to support this validation by the network operator. Robot engines are containerized based on micro-service architecture and have been deployed using Kubernetes - a container orchestration tool. We successfully demonstrated that mobile robots are able to avoid obstacles in real-time when the engines are remotely running in 5G MEC server. Test results are compared with 5G Public Cloud and 4G (LTE) Public Cloud as well.
BaaS(Blockchain as a Service)는 블록체인의 사용이 어렵다는 단점을 유연한 자원운용이 가능하고 뛰어난 접근성의 특징을 가진 클라우드와 접목하여 쉽게 블록체인을 구축하고 사용할 수 있도록 해주는 클라우드 서비스이다. BaaS 의 등장으로 블록체인의 접근성은 큰 범위로 증가하였으며 다양한 도메인에 활용되고 있다. 하지만 클라우드 기반 서비스이기 때문에 클라우드 서비스의 문제점인 보안 이슈가 제기되었다. 본 논문에서는 BaaS 에 ZKP(Zero-Knowledge Proof)와 엣지 컴퓨팅 기술을 활용하여 보안성을 제공할 수 있는 새로운 BaaS 모델인 EBaaS 를 제안한다. EBaaS 는 엣지 컴퓨팅 기술을 적용하여 클라우드 서비스 공급업체에 대한 데이터 종속성을 제거하고 블록체인의 고가용성을 제공할 수 있으며 ZKP 를 활용하여 내부적으로 민감한 데이터에 대한 보안성도 제공할 수 있다.
본 논문에서는 딥러닝을 이용한 작업자 위험 행동 모니터링 선행 연구에 기반해, 엣지 컴퓨팅 기반 딥러닝을 사용하여 클라우드에 대한 의존성 문제를 해결하였다. 작업자는 IoT 안전벨트와 영상 전송 안전모를 통해 정보를 수집, 처리한다. 또한 LSTM 방식에서 개량된 필터를 통한 FFNN 딥러닝 방법을 사용하여 작업자 위험 행동 패턴 분석을 하며 선행 연구의 작업자 행동 모니터링 시스템을 엣지 컴퓨팅 기반 위에서 구현하였다.
Qian, Zhuohao;Latt, Cho Nwe Zin;Kang, Sung-Won;Rhee, Kyung-Hyune
한국정보처리학회:학술대회논문집
/
한국정보처리학회 2022년도 춘계학술발표대회
/
pp.272-275
/
2022
The federated learning can be utilized in conjunction with the blockchain technology to provide good privacy protection and reward distribution mechanism in the field of intelligent IOT in edge computing scenarios. Nonetheless, the synchronous federated learning ignores the waiting delay due to the heterogeneity of edge devices (different computing power, communication bandwidth, and dataset size). Moreover, the potential of smart contracts was not fully explored to do some flexible design. This paper investigates the fusion application based on the FLchain, which is the combination of asynchronous federated learning and blockchain, discusses the communication optimization, and explores the feasible design of smart contract to solve some problems.
모바일 로봇의 자율주행을 위하여 인터넷이 제약된 환경에서도 가능한 Edge computing 에서의 Object Detection 이 필수적이다. 본 논문에서는 이를 위해 Orin 보드에서 YOLOv7 과 Complex_YOLOv4 를 구현하였다. 직접 취득한 데이터를 통해 YOLOv7 을 구현한 결과 0.56 의 mAP 로 프레임당 133ms 가 소요되었다. Kitti Dataset 을 통해 Complex_YOLOv4 를 구현한 결과 0.88 의 mAP 로 프레임당 236ms 가 소요되었다. Comple_YOLOv4 가 YOLOv7 보다 더 많은 데이터를 예측하기에 시간은 더 소요되지만 높은 정확성을 가지는 것을 확인할 수 있었다.
본 논문에서는 험지 환경에서 순찰하는 모바일 로봇의 이동 가능성(traversability)을 수행하기 위해 로봇에 탑재되는 Jetson AGX Orin에서의 실시간 Semantic Segmentation을 달성하는 것을 목표로 하였다. 험지 환경을 위한 OFFSEG 모델을 활용하였으며, 다운샘플링, 파라미터 최적화 등 각종 경량화 기술을 적용하여 지연 시간을 단축시켰다. 또한 현장과 유사한 환경에서의 테스트를 통해 처리 시간을 목표로 하는 100ms에 근접한 시간으로 단축할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.