• 제목/요약/키워드: Eddy loss

검색결과 246건 처리시간 0.028초

누설자속에 의한 대용량 변압기의 권선지지구조 및 외함의 와전류손실 계산에 관한 연구 (The Loss Calculation of Eddy Current of the Tank and Winding Supports in Transformers by the Leakage Flux)

  • 허우행;이동엽;김규탁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.948-950
    • /
    • 2005
  • This paper compared the test data with the loss when a conductor is exposed to the magnetic fieldof reactors after generating external magnetic field in specimen by means of an air core reactor model and the calculation of loss came from a tying the combination of FEM and integral method. It was applied to the loss measurement of transformers due to leakage flux.

  • PDF

고자속밀도와 저손실 특성을 갖는 중주파수대 철심재료 개발 및 응용 (Development of Core Material with High Magnetic Induction and Low Iron Loss for Middle-Frequency Applications)

  • 조성수;한상옥
    • 전기학회논문지P
    • /
    • 제58권2호
    • /
    • pp.190-195
    • /
    • 2009
  • Thin-gauged 3% silicon steel sheets having a highly grain-oriented texture have been developed as a core material for applications of middle-frequency (400 Hz ${\sim}$ 10 kHz) devices. The newly developed sheets with a tension coating showed an excellent reduction in iron loss at 400 Hz (iron loss at 1.0 T and 400 Hz = 4.677 W/kg, iron loss at 1.5 T and 400 Hz = 9.742 W/kg) due to high magnetic induction, $B_{10}$(measured induction at 1000 A/m), of over 1.9 T. In cases of frequencies below 400 Hz, magnetic induction, $B_{10}$, of the sample plays a major role to reduce its iron loss as excitation induction increases, whereas, in case of frequency of 1 kHz, thickness dependence becomes dominant due to a lower iron loss at relatively thinner sample. The sheets with a high magnetic induction, therefore, are favorable for high excitation induction (over 1.0 T) and low excitation frequency (below 400 Hz) applications, whereas the sheets that can reduce eddy current loss by reducing thickness or domain wall width are advantageous for low excitation induction (below 1.0 T) and high excitation frequency (around 1 kHz) applications.

극박 방향성 규소강판과 상용 방향성 규소강판의 철손특성 비교 (Comparison of iron loss characteristics between thin-gauged grain-oriented 3% Si-Fe sheets and commercial 0.3 mm-thick grain-oriented electrical sheets)

  • 조성수;김상범;소준영;채우규;한상옥
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.2009_2010
    • /
    • 2009
  • Thin-gauged 3% Si-Fe sheets having a high magnetic induction of over 1.9 T have been developed for the purpose of applications where operation frequency is higher than power frequency. In order to clarify requirements of iron loss characteristics for the applications, iron loss characteristics of the newly developed strip were investigated by iron loss separation method and were compared with those of commercially produced 0.3 mm-thick electrical sheets. In case of relatively high excitation induction(1.7 T) and low frequency(60 Hz), reducing hysteresis loss is effective to decrease total iron loss. In case of relatively low excitation induction(1.0 T) and high frequency(1 kHz), reducing eddy-current loss is effective by decreasing thickness and grain size to improve total iron loss.

  • PDF

Relationship Between AC and DC Magnetic Properties of an Iron-Based Amorphous Alloy for High Frequency Applications

  • Choi, Y.S.;Noh, T.H.;Lim, S.H.
    • Journal of Magnetics
    • /
    • 제1권1호
    • /
    • pp.24-30
    • /
    • 1996
  • The relationship between effective permeability and the remanence ratio of an Fe-based amorphous alloy (Metglas 2605S3A) is investigated over a wide frequency range, in an effort to understand magnetization behavior of the alloy. In the frequency range from 1 to 200 kHz, the permeability is maximum at the remanence ratio of 0.4-0.5 and, at frequencies over 500 kHz, the correlation with negative coefficients emerges indicating that the permeability decreases with the remanent ratio, except for the ribbon coated with an insulating layer of MgO which exhibits both high values of the effective permeability and remanence ratio. It is considered from the correlation results that the boundary at which the dominant magnetization mechanism changes from domain wall motion to spin rotation is near 500 kHz. The core loss is also investigated as a function of annealing time when the samples are annealed at a fixed temperature of $435^{\circ}C$. The core loss in most cases decreases with the annealing time, the degree of the loss may consist of the hysteresis loss and anomalous eddy current loss. The two loss components are considered to be of similar magnitudes at low frequencies while, at high frequencies, the dominant contribution to the total loss is the anomalous loss.

  • PDF

영구자석 브러시리스 AC 모터의 와전류 손실 특성해석 (Eddy Current Loss Analysis of the Permanent Magnet Brushless AC Motor)

  • 장석명;조한욱;이성호;정연호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.700-702
    • /
    • 2002
  • High-speed brushless permanent magnet machines are good for compressor and aerospace applications, etc. since they are conductive to high efficiency, high power density, small size and low weight. This paper presents 3-phase permanent magnet brushless AC Motor designed for the high-speed drives. Especially, we predicted the inverter high frequency pulse width modulation (PWM) switching caused eddy current losses in a permanent magnet brushless dc motor.

  • PDF

A Study on the Overheating of the Power Cable Tray

  • Choi, Hyung-Joo;Lee, Heung-Ho
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권4호
    • /
    • pp.413-420
    • /
    • 2013
  • This paper includes the results of the electromagnetic finite element analysis with regard to overheating problem of the power cable tray due to asymmetric magnetic flux density. This phenomenon was experienced in the utility power plant, Korea. The influences of the power cable arrangements and material of the tray were analyzed to find the best solutions using the eddy current-thermal coupled analysis.

유한 요소법에 의한 편측식 선형유도전동기의 1차측과 2차측의 횡방향 편위에 따른 특성해석 (The Characteristic Analysis of a Single-Sided Linear Induction Motor due to the Lateral Displacement of the Primary and the Secondary by the F.E.M.)

  • 임달호;최창규;조철직;조윤현
    • 대한전기학회논문지
    • /
    • 제39권8호
    • /
    • pp.820-827
    • /
    • 1990
  • For the purpose of investigation the thrust force, the lateral force, and the eddy current loss when the primary and the secondary of a single-sided linear induction motor is displaced in the space, this paper proposes an analysis technique for the characteristics of the eddy current induced on the secondary and the magnetic flux density distribution in the y-z plane by F.E.M. To verify the effectiveness of this analysis technique, the starting-thrust force due to a lateral displacement is compared to the experimental data.

  • PDF

A Equivalent Finite Element Model of Lamination for Design of Electromagnetic Engine Valve Actuator

  • Kim, Jin-Ho
    • Journal of Magnetics
    • /
    • 제11권4호
    • /
    • pp.151-155
    • /
    • 2006
  • The electromagnetic engine valve actuator is a key technology to achieve variable valve timing in internal combustion engine and the steel core and clapper of the electromagnetic engine valve actuator are laminated to reduce the eddy current loss. To design and characterize the performance of the electromagnetic engine valve actuator, FE (finite element) analysis is the most effective way, but FE (finite element) 3-D modeling of real lamination needs very fine meshes resulting in countless meshes for modeling and numerous computations. In this paper, the equivalent FE 2-D model of electromagnetic engine valve actuator is introduced and FE analysis is performed using the equivalent FE 2-D model.

Modeling Environmental Effects on Detection Performances for Variable Depth Sonars in the East Sea of Korea

  • Na, Young-Nam;Cho, Chang-Bong;Han, Sang-Kyu
    • The Journal of the Acoustical Society of Korea
    • /
    • 제23권2E호
    • /
    • pp.68-73
    • /
    • 2004
  • In the East Sea of Korea, the ocean environments are known to have strong variations in space and time. Their effects are very important factors in sound propagation and sonar performance. We consider the environmental factors such as eddies and thermal fronts affecting underwater sound propagation and target detection performance by sonars. Unfortunately, however, the detailed structure of eddies is usually difficult to understand by using the sea surface temperatures from infrared images alone or a few profiles from the CTD (conductivity, temperature and depth) castings. The temperature fields of eddy and thermal front are simulated with typical patterns of those obtained from several observations. This paper delivers the overviews of environments and acoustic models with their simulation results on sonar performance.

고속 전동/전기의 손실 특성 (Characteristics of Rotor Losses in High-Speed Motor/Generator)

  • 장석명;조한욱;이성호;조성국;정연호;이중호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.163-165
    • /
    • 2002
  • High-speed permanent magnet machines are currently being developed for a number of applocations including gas-turbine generator sets and machine tools. Due to the high peripheral speed of the rotor and the relatively high conductively of the magnets used, rotor eddy current loss can be substantial. On the basis of analytical and finite element method, this paper deals with an analytical method for calculating eddy current losses in the rotor with permanent magnet and retaining ring.

  • PDF