• Title/Summary/Keyword: Eddy current loss

Search Result 218, Processing Time 0.031 seconds

2-D Finite Element Analysis of Brushless DC Motor Considering Eddy Current (와전류 손실을 고려한 브러시리스 DC 모터의 2차원 유한 요소 해석)

  • Choi, Tae-Sik;Chun, Yon-Do;Lee, Ju;Lim, Tae-Bin;Kim, Suk-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.49-51
    • /
    • 1999
  • This paper presents an efficient 2D finite element analysis(FEA) for brushless DC motor (BLDCM) taking into account the eddy current and lamination effect of stator. In BLDCM, the dynamic characteristic analysis considering the eddy current and driving circuit is applied for the accurate prediction of motor performance in high speed because the eddy current loss is proportional of square of the driving frequency. According to the variation of lamination number, the characteristics of electro magnetic force, torque, and eddy current loss are analyzed. From the results, it is known that the effect of the lamination of stator on the eddy current loss is verified.

  • PDF

Analysis of eddy current loss in high-Tc superconducting power cables with respect to various structure of stabilizer (초전도 전력 케이블에서의 stabilizer의 형태에 따른 와전류 손실 해석)

  • Choi S. J.;Song M. K.;Lee S. J.;Sim K. D.;Cho J. W.
    • Progress in Superconductivity
    • /
    • v.7 no.1
    • /
    • pp.83-86
    • /
    • 2005
  • The High-Tc superconducting power cable consists of a multi-layer high-Tc superconducting cable core and a stabilizer which is used to bypass the current at fault time. Eddy current loss is generated in the stabilizer in normal operating condition and affects the whole system. In this paper, the eddy current losses are analyzed with respect to various structure of stabilizer by using opera-3d. Moreover, optimal conditions of the stabilizer are derived to minimize the eddy current losses from the analyzed results. The obtained results could be applied to the design and manufacture of the high-Tc superconducting power cable system.

  • PDF

Analysis and Understanding of Eddy Current Problem using electromagnetic field Packeg (전자장 해석 프로그램을 이용한 와전류 문제의 해석 및 이해)

  • Lim, Keon-Gyu;Lee, Hyang-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2203-2204
    • /
    • 2006
  • When the coil with alternating current approaches to the conductor the eddy current flows in conductor. Eddy current is concentrated on the conductor surface and decrescent because of skin effet.. In this paper investigated eddy current characteristic that is happened in conductor. Analyzed characteristic using electromagnetic field finite element analysis program that is commercialized to analyze value of eddy current and penetration depth. Analyzed creation value of eddy current and penetration depth in conductor that change operation frequency and the material of conductor, coil outside diameter, inside diameter, position, type of conductor from analyzed eddy current characteristic. The results. using distribution of eddy current and penetration depth data is that will help to forecast ECT(Eddy Current Testing), Eddy current application and use field, eddy current loss.

  • PDF

Analysis and Understanding of Eddy Current Problem using electromagnetic field Packeg (전자장 해석 프로그램을 이용한 와전류 문제의 해석 및 이해)

  • Lim, Keon-Gyu;Lee, Hyang-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.571-572
    • /
    • 2006
  • When the coil with alternating current approaches to the conductor the eddy current flows in conductor. Eddy current is concentrated on the conductor surface and decrescent because of skin effet.. In this paper investigated eddy current characteristic that is happened in conductor. Analyzed characteristic using electromagnetic field finite element analysis program that is commercialized to analyze value of eddy current and penetration depth. Analyzed creation value of eddy current and penetration depth in conductor that change operation frequency and the material of conductor, coil outside diameter, inside diameter, position, type of conductor from analyzed eddy current characteristic. The results, using distribution of eddy current and penetration depth data is that will help to forecast ECT(Eddy Current Testing), Eddy current application and use field, eddy current loss.

  • PDF

Analysis and Understanding of Eddy Current Problem using electromagnetic field Packeg (전자장 해석 프로그램을 이용한 와전류 문제의 해석 및 이해)

  • Lim, Keon-Gyu;Lee, Hyang-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1237-1238
    • /
    • 2006
  • When the coil with alternating current approaches to the conductor the eddy current flows in conductor. Eddy current is concentrated on the conductor surface and decrescent because of skin effet.. In this paper investigated eddy current characteristic that is happened in conductor. Analyzed characteristic using electromagnetic field finite element analysis program that is commercialized to analyze value of eddy current and penetration depth. Analyzed creation value of eddy current and penetration depth in conductor that change operation frequency and the material of conductor, coil outside diameter, inside diameter, position, type of conductor from analyzed eddy current characteristic. The results. using distribution of eddy current and penetration depth data is that will help to forecast ECT(Eddy Current Testing), Eddy current application and use field, eddy current loss.

  • PDF

Analysis and Understanding of Eddy Current Problem using electromagnetic field Packeg (전자장 해석 프로그램을 이용한 와전류 문제의 해석 및 이해)

  • Lim, Keon-Gyu;Lee, Hyang-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1697-1698
    • /
    • 2006
  • When the coil with alternating current approaches to the conductor the eddy current flows in conductor. Eddy current is concentrated on the conductor surface and decrescent because of skin effect. In this paper investigated eddy current characteristic that is happened in conductor. Analyzed characteristic using electromagnetic field finite element analysis program that is commercialized to analyze value of eddy current and penetration depth. Analyzed creation value of eddy current and penetration depth in conductor that change operation frequency and the material of conductor, coil outside diameter, inside diameter, position, type of conductor from analyzed eddy current characteristic. The results, using distribution of eddy current and penetration depth data is that will help to forecast ECT(Eddy Current Testing), Eddy current application and use field, eddy current loss.

  • PDF

Improve of efficiency of Multi D.O.F spherical motor through the reduction of eddy current loss (다자유도 구형 구동 모터의 와전류 손실 저감을 통한 효율 향상 연구)

  • Hong, Kyung-Pyo;Lee, Won-Kook;Lee, Ho-Joon;Kang, Dong-Woo;Won, Sung-Hong;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.947-948
    • /
    • 2011
  • Efficiency of Multi D.O.F spherical motor is one of the important performance indicators. So Through the reduction of eddy current loss on how to improve the efficiency were studied. Stator iron core's material with high permeability and resistivity of material using the eddy current loss was reduced. However, it was the disadvantages of production and economic. For these reasons, prevent eddy current loss of the iron core of multi D.O.F spherical motor as a viable alternative to motor using rotor with double-air gap.

  • PDF

Reduction of Magnet Eddy Current Loss in 40kW HEV Traction motor by using FEA method (FEA 기법을 이용한 40kw급 HEV용 Traction 모터 Magnet Eddy Current Loss 저감 설계)

  • Kim, Kyung-Su;Lee, Sung-Ho;Cha, Hyun-Rok;Park, Sung-Jun;Lee, Kyu-Seok;Jeon, Seung-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.820-821
    • /
    • 2008
  • 본 논문은 FEA 기법을 이용하여 40kW급 HEV용 Traction 모터의 설계 및 고효율화를 위한 회전자 영구자석의 Eddy Current loss 저감 방안에 대한 연구를 수행하였다. 먼저 FEA 기법을 이용하여 40kW급 HEV용 Traction 모터 설계 및 특성해석을 수행하여 FEA 해석기법의 타당성을 확보하였다. 또한 Traction 모터의 손실 저감을 위해 magnet부분의 eddy current loss 저감방안에 대해 논하였으며, FEA 기법을 이용하여 회전자 magnet이 Solid, 1/2, 1/4, 1/14 segments로 나눈 타입에 따른 결과를 비교 분석하였다. 그 결과 magnet형태를 기존의 Solid 타입에서 14segments 타입으로 분할 시, magnet 내부의 current path가 줄어들어 eddy current loss가 가장 많이 저감됨을 알 수 있었으며, 이를 통해 HEV용 traction 모터의 고효율, 고성능화 설계방안을 도출 할 수 있었다.

  • PDF

Analysis of Eddy Current Distribution and Loss in Metal Sheath of 154 kV Single Power Cable (154 kV 단상 전력 케이블의 금속 Sheath에서 발생하는 와전류 분포 및 손실 분석)

  • Im, Sang Hyeon;Kim, Kyoung Youn;Kim, Ki Byung;Park, Gwansoo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.2
    • /
    • pp.115-118
    • /
    • 2020
  • As interest in the reduction of energy loss has increased in recent years, analysis of losses in power cables is becoming more important. The overall loss in the transmission system can be measured, but there are many difficulties in researching the loss in each internal structure. There are various factors in the type of loss, and the loss of external factors by previous research has been studied. However, there is little research on the cable internal loss. Since the metal sheath inside the cable is made of aluminum having a high conductivity, an eddy current is generated due to the current flowing in the conductor, thereby causing an eddy current loss inevitably. In this paper, the eddy current loss in metal sheath of 154 kV Cable was researched through FEM (Finite Element Method) electromagnetic analysis.

Experimental Evaluation on Power Loss of Coreless Double-side Permanent Magnet Synchronous Motor/Generator Applied to Flywheel Energy Storage System

  • Kim, Jeong-Man;Choi, Jang-Young;Lee, Sung-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.256-261
    • /
    • 2017
  • This paper deals with the experimental evaluation on power loss of a double-side permanent magnet synchronous motor/generator (DPMSM/G) applied to a flywheel energy storage system (FESS). Power loss is one of the most important problems in the FESS, which supplies the electrical energy from the mechanical rotation energy, because the power loss decreases the efficiency of energy storage and conversion of capability FESS. In this paper, the power losses of coreless DPMSM/G are separated by the mechanical and rotor eddy current losses in each operating mode. Moreover, the rotor eddy current loss is calculated by the 3-D finite element analysis (FEA) method. The analysis result is validated by separating the power loss as electromagnetic loss and mechanical loss by a spin up/down test.