• Title/Summary/Keyword: Eddy Current Sensor

Search Result 149, Processing Time 0.026 seconds

Surface Precision due to Change of Cutting Depth and Cutting Location when Ball End Milling (볼엔드밀 가공시 절삭깊이와 가공위치의 변화에 따른 표면정밀도)

  • 박성은;왕덕현;김원일;이윤경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.274-278
    • /
    • 2000
  • Ball end milling process is widely used in the die and mould manufacturing because of suitableness for the machining of free form surface. But, as ball end mill is long and thin, it is easily deflected by cutting force. In this study, Cutting force, tool deflection and surface precision was measured according to the change of depth and cutting location. Cutting force was acquired with tool dynamometer and a couple of eddy-current sensor measured tool deflection in x-y direction each. After machining, surface precision was measured with roundness tester and coordination measuring machine for sculptured surface angle change and cutting depth.

  • PDF

In-Process Measurement of ELID Grinding Status -Thickness of Insulating layer-

  • Ahn, Jung-Hwan;Kim, Hwa-Young;Seo, Young-Ho;Paik, In-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1268-1273
    • /
    • 2001
  • To successfully establish the ELID-grinding, it is important to properly select the electrolytic condition according to grinding conditions. Currently, the selection of electrolytic condition is mainly dependent on the operators experience, which is one of difficulties preventing the successful application of ELID technique. In this study, an in-process measurement system of the insulating layer using two gap sensors-a capacitance type and an eddy current type-are developed and the change of the thickness of insulating layer during ELID grinding is detected. Evaluation experiments show the possibility to control the electrolytic condition through the in-process measurement of the layer status.

  • PDF

Measurement Algorithm of Bi-directional Diameter in Ground Spindles Using Extended Kalman Filter (확장 칼만필터를 이용한 연삭스핀들 외경의 측정알고리즘)

  • Bae, Jong-Il;Bae, Min-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.468-473
    • /
    • 2017
  • This paper presents an in-process measurement system for shaft radius measurement during grinding process. This system does not require to stop the grinding process, which can enhance productivity and quality. In order to measure the radius, the system employs an eddy current sensor that can measure without any contact with the shaft. This type of sensor is very appropriate because it is insensitive to interference such as cutting fluid, coolant, contact pressure, and wear. For data analysis, the measurement system is modeled as a linearized discrete form where the states with noise are estimated by an extended Kalman filter. This system has been validated through simulations and experiments.

Impedance Characteristics Analysis of Eddy Current Testing Sensor for T/R Probe Design (와전류탐상 T/R 프로브 제작을 위한 센서의 임피던스 특성해석)

  • Kim, Ji-Ho;Lee, Hyang-Beom
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.566-569
    • /
    • 2008
  • 와전류탐상(ECT) Transmit-Receive 프로브를 이용한 ECT 방법은 센서코일의 유도기전력의 변화를 관찰하여 피검사체의 결함이나 특성의 변화를 탐지해내는 방법이다. ECT T/R 프로브는 여러 개의 Pancake 코일로 구성되어있고, 각각의 코일은 Transmit 코일과 Receive 코일로 나뉜다. 본 논문은 실제 TH 프로브 제작에 앞서 동일한 특성을 갖는 와전류센서를 설계 및 제작하여 그 특성을 파악하였다. 와전류센서에 인가되는 시험주파수와 Lift-off의 변화에 대한 특성을 파악하고 와전류센서의 임피던스값을 산출하여 정규화 임피던스도를 그려 와전류센서의 특성을 살펴보았다.

  • PDF

Design of a Shielded Reflection Type Pulsed Eddy Current Probe for the Evaluation of Thickness (두께 평가를 위한 차폐된 반사형 펄스 와전류 탐촉자의 설계)

  • Shin, Young-Kil;Choi, Dong-Myung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.5
    • /
    • pp.398-408
    • /
    • 2007
  • For better evaluation of material thickness by using the reflection type pulsed eddy current method, various probe models are designed and their response signals, characteristics, and sensitivities to thickness variation are investigated by a numerical analysis method. Since the sensor needs to detect magnetic fields from eddy currents induced in a test material, not from the exciter coil, two types of models that are shielded by the combination of copper and ferrite and only by ferrite are considered. By studying response signals from these shielded probe models, the peak value and the zero crossing time are selected as useful signal features for the evaluation of material thickness. Investigation of sensitivities of these two features shows that the sensitivity of peak value is more useful than that of zero crossing time and that the probe shielded only by ferrite gives much better sensitivity to thickness variation.

Nondestructive evaluation of wall thinning covered with insulation using pulsed eddy current (펄스와전류를 이용한 보온재 비해체식 배관감육 평가기술)

  • Park, Duck-Gun;Babu, M.K.;Lee, Duk-Hyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.90-95
    • /
    • 2014
  • Local wall thinning is a point of concern in almost all steel structures such as pipe lines covered with a thermal insulator made up of materials with low thermal conductivity(fiberglass or mineral wool); hence, Non Destructive Technique(NDT) methods that are capable of detecting the wall thinning and defects without removing the insulation are necessary. In this study we developed a Pulsed Eddy Current(PEC) system to detect the wall thinning of Ferro magnetic steel pipes covered with fiber glass thermal insulator and shielded with Aluminum plate. The developed system is capable of detecting the wall thickness change through an insulation of thickness 10cm and 0.4mm aluminum shielding. In order to confirm the thickness change due to wall thinning, two different sensors, a hall sensor and coil sensor were used as a detecting element. In both cases, the results show a very good change corresponding to the thickness change of the test specimen. During these experiments a carbon steel tube of diameter 210mm and a length of 620mm, which is covered with insulator of 95mm thickness was used. To simulate the wall thinning, the thickness of the tube is changed for a specified length such as 2.5mm, 5mm and 8 mm from the inner surface of the tube. A 0.4mm thick Aluminum plate was covered on the Test specimen to simulate the shielding of the insulated pipelines. For both hall sensor and coil detection methods Fast Fourier transform(FFT) was calculated using window approach and the results for the test specimen without Aluminum shielding were summarized which shows a clear identification of thickness change in the test specimen by comparing the magnitude spectra. The PEC system can detect the wall thinning under the 95 mm thickness insulation and 0.4 mm Al shielding, and the output signal showed linear relation with tube wall thickness.

Spatial and Temporal Aspects of Phytoplankton Blooms in Complex Ecosystems Off the Korean Coast from Satellite Ocean Color Observations

  • Ahn, Yu-Hwan;Shanmugam, Palanisamy;Chang, Kyung-Il;Moon, Jeong-Eon;Ryu, Joo-Hyung
    • Ocean Science Journal
    • /
    • v.40 no.2
    • /
    • pp.67-78
    • /
    • 2005
  • Complex physical, chemical and biological interactions off the Korean coast created several striking patterns in the phytoplankton blooms, which became conspicuous during the measurements of ocean color from space. This study concentrated on analyzing the spatial and temporal aspects of phytoplankton chlorophyll variability in these areas using an integrated dataset from a Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Advanced Very High Resolution (AVHRR) sensor, and Conductivity Temperature Depth (CTD) sensor. The results showed that chlorophyll concentrations were elevated in coastal and open ocean regions, with strong summer and fall blooms, which appeared to spread out in most of the enclosed bays and neighboring waters due to certain oceanographic processes. The chlorophyll concentration was observed to range between 3 and $54\;mg\;m^{-3}$ inside Jin-hae Bay and adjacent coastal bays and 0.5 and $8\;mg\;m^{-3}$ in the southeast sea offshore waters, this gradual decrease towards oceanic waters suggested physical transports of phytoplankton blooms from the shallow shelves to slope waters through the influence of the Tsushima Warm Current (TWC) along the Tsushima Strait. Horizontal distribution of potential temperature $(\theta)$ and salinity (S) of water off the southeastern coast exhibited cold and low saline surface water $(\theta and warm and high saline subsurface water $({\theta}>12^{\circ}C; S>34.4)$ at 75dBar, corroborating TWC intrusion along the Tsushima Strait. An eastward branch of this current was called the East Korean Warm Current (EKWC), tracked with the help of CTD data and satellite-derived sea surface temperature, which often influenced the dynamics of mesoscale anticyclonic eddy fields off the Korean east coast during the summer season. The process of such mesoscale anticyclonic eddy features might have produced interior upwelling that could have shoaled and steepened the nutricline, enhancing phytoplankton population by advection or diffusion of nutrients in the vicinity of Ulleungdo in the East Sea.

GMR Sensor Applicability to Remote Field Eddy Current Defect Signal Detection in a Ferromagnetic Pipe (강자성 배관의 원격장 와전류 결함 신호 검출에 GMR Sensor의 적용성 연구)

  • Park, Jeong Won;Park, Jae Ha;Song, Sung Jin;Kim, Hak Joon;Kwon, Se Gon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.483-489
    • /
    • 2016
  • The typical methods used for inspecting ferromagnetic pipes include the ultrasonic testing (UT) contact method and the following non-contact methods: magnetic flux leakage (MFL), electromagnetic acoustic transducers (EMAT), and remote field eddy current testing (RFECT). Among these methods, the RFECT method has the advantage of being able to establish a system smaller than the diameter of a pipe. However, the method has several disadvantages as well, including different sensitivities and difficult-to-repair coil sensors which comprise its array system. Therefore, a giant magneto-resistance (GMR) sensor was applied to address these issues. The GMR sensor is small, easy to replace, and has uniform sensitivity. In this experiment, the GMR sensor was used to measure remote field and defect signal characteristics (in the axial and radial directions) in a ferromagnetic pipe. These characteristics were measured in an effort to investigate standard defects at changing depths within a pipe. The results show that the experiment successfully demonstrated the applicability of the GMR sensor to RFECT signal detection in ferromagnetic pipe.

Reducing the Non Grinding Time in Grinding Operations(2nd report) -Decision of Dressing Chance and Depth by the Direct Measurement of Grinding Wheel Surface- (연삭가공에 있어 비가공 시간 단축에 관한 연구(II))

  • KIM, Sun Ho;AHN, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.101-107
    • /
    • 1997
  • In general, grinding is one of the final machining processes which determines the surface quality of machined products. Since the ground surface is affected by the states of grains and voids on the grinding wheel surface, the wheel should be dressed before the machined surface deteriorates over a quality limit This paper describes a systematic approach to decide a proper dressing chance and an optimal dressing depth for the working grinding wheel. An eddy current sensor and a laser displacement sensor are used to measure the loading on the working wheel surface and the topography of the dressed wheel surface respec- tively. The dressing chance can be properly decided through the relational locus between the amount of handing and the machined surface roughness. An optimal dressing depth to guarantee the less wheel loss and the higher wheel surface quality is decided through the analysis of the variance of topography for the dressed wheel surface, which decreases at three different rates according to the accumulated dressing depth.

  • PDF

Thickness evaluation of Cr coating fuel rod using encircling ECT sensor

  • Park, Jeong Won;Ha, Jong Moon;Seung, Hong Min;Jang, Hun;Choi, Wonjae
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3272-3282
    • /
    • 2022
  • To improve the safety and life extension qualities of nuclear fuel rods which is currently made of zirconium (Zr) alloy, research on the application of chromium (Cr) coating was conducted. Cr coating has advantages such as increased corrosion resistance and reduced oxidation rate, but non-destructive thickness evaluation studies are needed to ensure the reliability of the steps taken to provide uniform coating thickness. Eddy current testing (ECT) is a representative non-destructive technique for such as thickness evaluation and surface defect inspection. To inspect changes in thickness at micron scale, the Swept Frequency Eddy Current Testing (SFECT) method was applied to select a frequency range sensitive to changes in thickness. The coating thickness was evaluated using changes in signals, such as that for impedance. In this study, basic research was performed to evaluate the thickness of the Cr coating on a rod using an encircling sensor and the SFECT technique. The sensor design parameters were determined through simulation, after which the new sensor was manufactured. A sensor capable of measuring the thickness of a non-uniformly Cr-coating rod was selected through an experiment evaluating the performance of the manufactured sensor. This was done using the impedance-difference of a Cr-coating rod and a Zr alloy rod. The possibility of evaluation of the Cr coating thickness was confirmed by comparing the experimental results with the selected sensor and the signals of the measured Cr-coating rod. All simulation results were verified experimentally.