• Title/Summary/Keyword: Eddy Current Loss

Search Result 218, Processing Time 0.032 seconds

Parameter estimation of the inverter-driven squirrel cage induction motor (인버터구동시 농형 유도전동기의 파라메타 추정)

  • Kang, Sei-Hyung;Ahn, Jong-Bo;Kim, Keun-Woong;Kim, Young-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.695-698
    • /
    • 1992
  • When the inverter driven Induction motor is compared with sinusoidal voltage driving, the loss is increased and efficiency in the same output is decreased by the time harmonics in inverter output. These are based on the eddy current on stator and the skin effects of rotor bar current induced from time harmonic. The aim of this paper is to estimate the equivalent circuit parameter of squirrel cage induction motor fed from inverter considering this effects.

  • PDF

Dynamic Modeling of an Fine Positioner Using Magnetic Levitation (자기 부상 방식 미세 운동 기구의 동적 모델링)

  • Jeong, Gwang-Seok;Baek, Yun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1166-1174
    • /
    • 2000
  • In this paper, we introduce a positioner based on magnetic levitation to eliminate the friction which is the most severe effect to limit high resolution on the micro level. Differently from existing electromagnetic device, the proposed positioner consists of air core solenoid and permanent magnet. Although the combination produces small magnetic force, it is suitable for realizing micro motion repeatedly without the accumulation of error because there is no hysteresis caused by ferromagnetic materials, no eddy current loss, no flux saturation. First, the approximate modeling of stiffness and damping effects between the magnetic elements is made and verified experimentally. Then, we have formulated the dynamic equation of one d.o.f magnetic levitation positioner using linear perturbation method and discussed the necessity of optimization for the chief design parameters to maximize the stability performance.

The Effect of Ferrite Cores on the Inductively Coupled Plasma Driven at 13.56 MHz (13.56 MHz 유도 결합 플라즈마에서의 강자성체 페라이트 코어의 효과)

  • Lee, Won-Ki;Lee, Kyeong-Hyo;Chung, Chin-Wook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.3 s.12
    • /
    • pp.35-38
    • /
    • 2005
  • Due to high permeability of the ferrite cores, the characteristics of the inductively coupled plasma(ICP) are expected to be greatly improved. We investigated the effect of the ferrite cores on conventional inductively coupled plasma. It was observed that the current and voltage in the ICP antenna are slightly decreased and the power transfer efficiency is increased. However, due to eddy current and hysteresis loss, plasma density in the ICP with the ferrite cores is not increased. It seems that the ICP with the ferrite cores at low frequency ($\∼$100 kHz) will be greatly improved since the losses at the low frequency can be negligible.

  • PDF

A Study on the Development of BLDC Motor with High Power Density (고출력 브러시레스 직류전동기 개발에 관한 연구)

  • Kim, Hyeon-Cheol;Gong, Yeong-Gyeong;Choe, Tae-In;Song, Jong-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.5
    • /
    • pp.297-304
    • /
    • 2000
  • The motor for torpedo propulsion is needed the compact and short rating high power characteristics. This paper describes the development of the motor through the theory and Finite Element Method(FEM) analysis for Brushless Direct Current Motor(BLDCM) of 7 phase 6 poles. Back EMF, inductance and eddy current loss were analyzed. The proposed methods like magnetic wedge acquired by these FEM analysis were introduced. Phase-leading angle using encoder was used. Test results on the motor of 7 phase 6 poles were showed the validity of proposed methods and phase-leading angle.

  • PDF

Analysis of transformer sheet winding losses and temperature rise (변압기 sheet권선 손실 및 온도 상승 해석)

  • Kim, Ji-Hyun;Kim, Young-Man;Ro, Kyoung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.23-25
    • /
    • 2005
  • This paper describes analysis of transformer sheet winding losses and temperature rise. Sheet windings are used if transformer rating currents are so high that one meets current density limit on windings. Unlike stranded windings, sheet windings may be locally healed due to R direction flux. Winding losses with eddy current effect are calculated by finite element electromagnetic analysis and temperature rise is also calculated by Computational Fluid Dynamics (CFD) with loss result.

  • PDF

The effect of ferrite cores on the inductively coupled plasma driven at 13.56MHz (13.56MHz 유도 결합 플라즈마에서의 강자성체 페라이트 코어의 효과)

  • Lee, Won-Ki;Lee, Kyeong-Hyo;Chung, Chin-Wook
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.09a
    • /
    • pp.197-202
    • /
    • 2005
  • Due to high permeability of the ferrite core, the characteristics of the ICP are expected to be greatly improved. We investigated the effect of the ferrite cores on conventional inductively coupled plasma. It was observed that the current and voltage in ike ICP antenna are slightly decreased and the power transfer efficiency is increased. However, due to eddy current and hysterisis loss, plasma density in the ICP with the ferrite cores is not increased. It seems that the ICP with the ferrite cores at low frequency (${\~}$100kHz) will be greatly improved since the losses at the low frequency can be negligible.

  • PDF

A Study on the Performence improvment of Contactless Inductive Coupler for the Stocker System (반도체 제조장비용 무접점 Inductive Coupler의 성능개선을 위한 연구)

  • Kim, Hyun-Woo;Ban, Sang-Ho;Kwon, Ho;Park, Jae-Bum;Lee, Ju;Lee, Chul-Jik;Kim, Suk-Tae;Kim, Jun-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.923-925
    • /
    • 2002
  • The existing contactless inductive coupler has many problems because of its large volume and high level of exciting current, so a new contactless inductive coupler is being required under the circumstances and the load requirement. For a contactless inductive coupler in the manufacturing equipment of semiconductor, the coupler's efficiency is low because of its small magnetic inductance and large leakage inductance. Moreover, the high frequency switching to increase energy density per unit volume increases the iron loss and the eddy current loss, so it must be considered deeply when selecting core materials. Therefore, this paper presents core materials and shape to improve the performance of the contactless inductive coupler according to the coil positions.

  • PDF

Analysis of losses within SMES system for compensating output fluctuation of wind power farm

  • Park, S.I.;Kim, J.H.;Le, T.D.;Lee, D.H.;Kim, D.J.;Yoon, Y.S.;Yoon, K.Y.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.57-61
    • /
    • 2014
  • Output fluctuation which is generated in wind power farm can hinder stability of total power system. The electric energy storage (EES) reduces unstable output, and superconducting magnetic energy storage (SMES) of various EESs has the proper performance for output compensation of wind power farm since it charges and discharges large scale power quickly with high efficiency. However, because of the change of current within SMES, the electromagnetic losses occur in the process of output compensation. In this paper, the thermal effect of the losses that occur in SMES system while compensating in wind power farm is analyzed. The output analysis of wind power farm is processed by numerical analysis, and the losses of SMES system is analyzed by 3D finite element analysis (FEA) simulation tool.

Conceptual Design of an HTS Motor for Future Electric Aircraft (차세대 전기 항공기를 위한 HTS 모터의 개념 설계)

  • Le, Dinh-Vuong;Nam, Gi-Dong;Lee, Seok-Ju;Park, Minwon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.5
    • /
    • pp.49-57
    • /
    • 2020
  • Conventional electric motors are not suitable for aircraft because of their large size and weight. High-temperature superconducting (HTS) motors have high current density, high magnetic field density, and low loss, so they can significantly reduce the size and weight compared to general electric motors. This paper presents the conceptual design and analysis results of HTS motors for electric propulsion in future aircraft. A 2.5 MW HTS motor with a rotational speed of 7,200 RPM was designed and the specific power (kW/kg) was analyzed. The operating temperature of the field coil of the HTS motor is 20K in consideration of LH2 cooling. The stator winding were connected in a multi-phase configuration and Litz wires were used to minimize eddy current losses. As a result, it was confirmed that the specific power of the motor is about 18.67 kW/kg, which is much higher than that of the conventional electric motor.

High-Speed BLDC Motor Design for Suction Fan and Impact on the Loss caused by Core Welding

  • Hong, Hyun-Seok;Kim, In-Gun;Lee, Ho-Joon;Go, Sung-Chul;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.126-133
    • /
    • 2017
  • This paper deals with the effects of welding, which is done to fix the stator stack, on a motor in case of fabricating a prototype motor that is manufactured in a small quantity. In the case of a small motor, the stator is designed and fabricated with the segmented core as a way to raise the fill factor of winding wire to the utmost within a limited size. In case of fabrication by welding both inside and outside of the stator in order to fix the segmented-core stator, the effects of stack are ignored, and the eddy current loss occurs. This paper performed the no-load test on an IPM-type BLDC motor for driving the suction fan of a vacuum cleaner, which was manufactured by using a segmented-core stator. As a result of the test, it was found that input power more than expected was supplied. To analyze the effects of welding by using the finite element analysis method and verify them experimentally, a stator was re-manufactured by bonding, and input power supplied during the no-load test was compared.