• Title/Summary/Keyword: Ecosytem structure and function

Search Result 1, Processing Time 0.026 seconds

Changes of Leaf Area Index, Physiological Activities and Soil Water in Tricholoma matsutake Producing Pine Forest Ecosystem (송이산 소나무림 생태계에서 엽면적지수와 생리적활동 및 토양수분의 변화)

  • Koo, Chang-Duck;Ka, Kang-Hyun;Park, Won-Chul;Park, Hyun;Ryu, Sung-Ryul;Park, Yong-Woo;Kim, Tae-Heon
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.4
    • /
    • pp.438-447
    • /
    • 2007
  • The purpose of this study was to understand the ecosystem structure and function and soil water changes in Tricholoma matsutake producing pine stands. The investigated stands were pine forest in Sogrisan National Park in Chungbuk-do of Korea. For the purpose we investigated main vegetation, leaf area index(LAI) as ecosystem structural factors and measured photosynthesis, transpiration, xylem water potential, and soil water changes as ecosystem functional factors. Vertical vegetation structure of the site was composed of Pinus densiflora as a overstory species, Quercus mongolica as midstory, Rhododendron mucronulatum, R. schlippenbachii and Fraxinus sieboldiana as understory ones. In the stands LAI was 3.8 during June to September, 2.6 in October and 2.1 during November to April. Photosyntheses of the trees were 6.0 to $7.0{\mu}mol\;CO_2/m^2/s$ in August, and for P. densiflora about $4.0{\mu}mol\;CO_2/m^2/s$ and for Q. mongolica $2.0{\mu}mol\;CO_2/m^2/s$ in mid October. However, R. mucronulatum stopped fixing $CO_2$ and F. sieboldiana shed off the leaves already in mid October. Transpirations were 2.5 to $3.5mmol\;H_2O/m^2/s$ in late August and about $1.0mmol/H_2O/m^2/s$ in mid October. Plant water potentials were -10 to -22 bars for P. densiflora and -5 to -12 bars for the other woody species. The lowest potentials was in late August and highest in late October. Soil water in the stand was closely related to topography. Soil water contents were 7 to 11% at the ridge, 8 to 15% at the hillside and 11 to 19% at the base. Soil temperatures were 0.2 to $0.4^{\circ}C$ higher in T. matustuake colony than noncolony. Mid September soil temperature decreased to $19^{\circ}C$ at which T. matsutake forms primordia. In T. matsutake colony soil moisture was 0.5 to 2.0% lower due to metabolism for consuming water. We suggest that the complicate relationships between ecosystem structure and function in Tricholoma matsutake producing pine stand need to be further investigated.