• Title/Summary/Keyword: Ecosystem model

Search Result 871, Processing Time 0.035 seconds

Predicting Impacts of Climate Change on Sinjido Marine Food Web (기후변화로 인한 신지도 근해 해양먹이망 변동예측)

  • Kang, Yun-Ho;Ju, Se-Jong;Park, Young-Gyu
    • Ocean and Polar Research
    • /
    • v.34 no.2
    • /
    • pp.239-251
    • /
    • 2012
  • The food web dynamics in a coastal ecosystem of Korea were predicted with Ecosim, a trophic flow model, under various scenarios of primary productivity due to ocean warming and ocean acidification. Changes in primary productivity were obtained from an earth system model 2.1 under A1B scenario of IPCC $CO_2$ emission and replaced for forcing functions on the phytoplankton group during the period between 2020 and 2100. Impacts of ocean acidification on species were represented in the model for gastropoda, bivalvia, echinodermata, crustacean and cephalopoda groups with effect sizes of conservative, medium and large. The model results show that the total biomass of invertebrate and fish groups decreases 5%, 11~28% and 14~27%, respectively, depending on primary productivity, ocean acidification and combined effects. In particular, the blenny group shows zero biomass at 2080. The zooplankton group shows a sudden increase at the same time, and finally reaches twice the baseline at 2100. On the other hand, the ecosystem attributes of the mean trophic level of the ecosystem, Shannon's H and Kempton's Q indexes show a similar reduction pattern to biomass change, indicating that total biomass, biodiversity and evenness shrink dynamically by impacts of climate change. It is expected from the model results that, after obtaining more information on climate change impacts on the species level, this study will be helpful for further investigation of the food web dynamics in the open seas around Korea.

Exploring the Stability of Predator-Prey Ecosystem in Response to Initial Population Density (초기 개체군 밀도가 포식자-피식자 생태계 안정성에 미치는 영향)

  • Cho, Jung-Hee;Lee, Sang-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.3
    • /
    • pp.1-6
    • /
    • 2013
  • The ecosystem is the complex system consisting of various biotic and abiotic factors and the factors interact with each other in the hierarchical predator-prey relationship. Since the competitive relation spatiotemporally occurs, the initial state of population density and species distribution are likely to play an important role in the stability of the ecosystem. In the present study, we constructed a lattice model to simulate the three-trophic ecosystem (predatorprey- plant) and using the model, explored how the ecosystem stability is affected by the initial density. The size of lattice space was $L{\times}L$, (L=100) with periodic boundary condition. The initial density of the plant was arbitrarily set as the value of 0.2. The simulation result showed that predator and prey coexist when the density of predator is less than or equal to 0.4 and the density of prey is less than or equal to 0.5. On the other hand, when the predator density is more than or equal to 0.5 and the density of prey is more than or equal to 0.6, both of predator and prey were extinct. In addition, we found that the strong nonlinearity in the interaction between species was observed in the border area between the coexistence and extinction in the species density space.

Trade-off Analysis Between National Ecosystem Services Due to Long-term Land Cover Changes (장기간 토지피복 변화에 따른 국내 생태계서비스 간 상쇄효과(Trade-off) 분석)

  • Yoon-Sun Park;Young-Keun Song
    • Korean Journal of Environment and Ecology
    • /
    • v.38 no.2
    • /
    • pp.204-216
    • /
    • 2024
  • Understanding the trade-off effect in ecosystem services and measuring the interrelationships between services are crucial for managing limited environmental resources. Accordingly, in this study, we identified the dominant trends and increases and decreases in ecosystem services derived from changes in land cover over about 30 years and tracked changes in the relationships between ecosystem services that occurred over time. Through it, we determined the relationship between land cover changes and ecosystem service changes, as well as the distinct characteristics of service changes in different areas. The research primarily utilized the InVEST model, an ecosystem service assessment model. After standardizing the evaluation results between 0 and 1, it went through principal component analysis, a dimensionality reduction technique, to observe the time-series changes and understand the relationships between the services. According to the research results, the area of urbanized regions dramatically increased between 1989 and 2019, while forests showed a significant increase between 2009 and 2019. Between 1989 and 2019, the national ecosystem service supply witnessed a 13.9% decrease in water supply, a 10.5% decrease in nitrogen retention, a 2.6% increase in phosphorus retention, a 0.9% decrease in carbon storage, a 1.2% increase in air purification, and a 3.4% decrease in habitat quality. Over the past 30 years, South Korea experienced an increase in urbanized areas, a decrease in agricultural land, and an increase in forests, resulting in a trade-off effect between phosphorus retention and habitat quality. This study concluded that South Korea's environment management policies contribute to improving ecosystem quality, which has declined due to urbanization, and maximizing ecosystem services. These findings can help policymakers establish and implement forestry policies focusing on sustainable environmental conservation and ecosystem service provision.

Evaluation of the Spatial Distribution of Water Yield Service based on Precipitation and Population (강수량 및 인구인자를 반영한 수원함양서비스의 공간분포 평가)

  • CHO, Heun-Woo;SONG, Chol-Ho;JEON, Seong-Woo;KIM, Joon-Soon;LEE, Woo-Kyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.3
    • /
    • pp.1-15
    • /
    • 2016
  • The study of ecosystem service assessment has been actively researched and developed from Millennium Ecosystem Assessment(MA) and The Economics of Ecosystems and Biodiversity(TEEB). However, current assessments are limited to monetary assessments of ecosystem function and do not account for the effects of environmental factors and socioeconomic status. This study proposes methods to evaluate ecosystem service based on environmental and socioeconomic factors. The study assesses water yield function through the water yield model in InVEST Tool, and evaluates the overall ecosystem service of water yield as reflected by the amount of precipitation and population of the area. Results show that a difference exists between spatial distributions of the ecosystem function of water yield derived from natural conditions such as land cover and soil, and the spatial distribution of the ecosystem service that accounts for climate and socioeconomic factors. The value of ecosystem service increases for an area of higher population and lower precipitation with similar water yield. Thus, the ecosystem service of water yield should be evaluated not only by the water yield function, but also by climate and socioeconomic factors. The evaluation process described for this study should also be applicable to the evaluation of ecological services in other sectors.

Application of InVEST Water Yield Model for Assessing Forest Water Provisioning Ecosystem Service (산림의 수자원 공급 생태계서비스 평가를 위한 InVEST Water Yield 모형의 적용)

  • Song, Chol-Ho;Lee, Woo-Kyun;Choi, Hyun-Ah;Jeon, Seong-Woo;Kim, Jae-Uk;Kim, Joon-Soon;Kim, Jung-Taek
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.1
    • /
    • pp.120-134
    • /
    • 2015
  • InVEST Water Yield model developed by Natural Capital Project was applied for South Korea to assess domestic forest ecosystem's water provisioning services. The InVEST Water Yield model required 8 input dataset, including six spatial map data and two derived by coefficients. By running the model with relatively easy acquired and modified data, the result of domestic forest ecosystem's water provisioning services was 9,409,622,083 ton using the standard of the year 2011. The result showed similar patterns and distribution of rainfall in 2011, but showed difference when compared with existing researches spatially driven in nationwide statistical analysis results. This difference is assumed to occur with different model mechanism in spatial implementation and statistical analysis. So given that the model is currently still developing, applications should be taken on qualitative perspectives rather than on quantitative perspectives. Additionally, for advancing the application of InVEST water yield model, quantification of suitable input data and comparison using multi-modeling is required.

A Theoretical Study on the Coevolution Strategy of University Innovation Ecosystems (대학 혁신생태계의 공진화 전략에 대한 이론적 고찰)

  • Park, Sang-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.268-277
    • /
    • 2020
  • This study emphasizes that the survival strategy of universities should be a co-evolution strategy based on ecological thinking. Therefore, the purpose of the research is to present a theoretical framework for dividing the university innovation ecosystem into four stages and building a co-evolution strategy for each step, as universities play a prominent role in regional innovation ecosystems. Thus, our research method focused on literature research, and the theoretical framework for the university innovation ecosystem used Moore's Enterprise Ecosystem Model (1996). The university's ecological innovation strategy is divided into four stages of development, and a step-by-step co-evolution strategy is presented. Findings are summarized as follows. The pioneering stage involves the creation of values of the university-led innovation ecosystem. The expansion stage focuses on the establishment of critical mass. The authority stage covers maintaining authority and bargaining power. The renewal stage features continuous performance improvement. In particular, this theoretical model of the university-regional innovation ecosystem is meaningful in that it provides a theoretical basis for enhancing the effectiveness of government financial support projects, and for individual universities, it provides a framework for strategies suitable for their ecosystem building process.

Estimation of Vegetation Carbon Budget in South Korea using Ecosystem Model and Spatio-temporal Environmental Information (생태계 모형과 시공간 환경정보를 이용한 우리나라 식생 탄소 수지 추정)

  • Yoo, Seong-Jin;Lee, Woo-Kyun;Son, Yo-Whan;Ito, Akihiko
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.145-157
    • /
    • 2012
  • In this study, we simulated a carbon flux model, so called Vegetation Integrated Simulator for Trace gases (VISIT) using Spatio-temporal Environmental Information, to estimate carbon budgets of vegetation ecosystem in South Korea. As results of the simulation, the model estimated that the annual-average gross primary production (GPP), net primary production (NPP) for 10 years were $91.89Tg\;C\;year^{-1}$, and $40.16Tg\;C\;year^{-1}$, respectively. The model also estimated the vegetation ecosystems in South Korea as a net carbon sink, with a value of $3.51Tg\;C\;year^{-1}$ during the simulation period. Comparing with the anthropogenic emission of South Korea, vegetation ecosystems offsets 3.3% of human emissions as a net carbon sink in 2007. To estimate the carbon budget more accurately, it is important to prepare reliable input datasets. And also, model parameters should be calibrated through comparing with various independent method. The result of this study, however, would be helpful for devising ecosystem management strategies that may help to mitigate global climate change.

A Study on the Library 2.0 Service From a Information Ecosystem View Point (정보생태계 관점에서 본 도서관 2.0 서비스의 연구)

  • Lee, Soo-Sang
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.42 no.2
    • /
    • pp.29-49
    • /
    • 2008
  • Library 2.0 stands for the term which suggests the changes in library's services. Library 2.0, the term, was first appeared in 2005 and have studied as a meaningful model for library services. The majority was related to the definition of basic concepts, overview of best practices, and case study for individual implementation. There are three goals of this study which is distinguished from other library 2.0 studies. First, I have surveyed various types of services and classified into three groups. Second, I have examined the properties viewed in this light of content, user, and manager. Third, I have propose a new conceptual model of a information ecosystem which thinks the library 2.0 collectively.

Long-term Prediction on the environmental flow and ecosystem habitat using ecosystem functions model considering future climate change (기후변화를 고려한 생태계기능 모델 기반 환경유량 산정 및 서식처 변화 전망)

  • Park, Seo-Yeon;Lee, Joo-Heon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.10-10
    • /
    • 2021
  • 하천은 인간뿐만 아니라 다양한 생물이 서식하는 장소로 하천생태계 보전은 수많은 생물들에게 있어 중요한 요소이다. 1970년대의 국내 하천은 대부분 자연하천의 모습을 경제 성장과 더불어 도시화, 공업화 등으로 용수 수요가 급속히 증가함에 따라 기능 위주의 하천관리가 이루어졌으며, 이로 인해 하천유황의 장기적인 변화가 나타났다. 변화가 발생한 하천은 본래의 모습인 자연 하천으로 완벽하게 복원될 수 없다는 한계점이 있으나, 자연과 인간이 서로 유익하게 도움을 주는 양방향 관계로 발전한다면 하천의 기능도 유지하고 하천수생생물 보존에도 긍정적인 영향을 미칠 수 있다. 즉, 하천이 갖고 있는 하천공학적 기능을 최대한 유지하면서도 다양한 수생생물의 서식처의 기능도 되살아나게 해야하는 복합적인 목적을 갖고 있다. 하천 수생생물의 서식처 복원을 위해서는 하천생태계에 필요한 환경유량의 정량적인 평가와 확보방안 및 공급방안의 검토가 필요하다. 본 연구에서는 HEC-EFM(Ecosystem Function Model)을 활용하여 하천 수생생물의 서식조건을 고려한 환경유량을 산정하였다. 연구 대상유역은 2013년 김천부항댐이 준공된 감천유역을 연구대상유역으로 선정하였으며, 댐 건설에 따른 환경유량의 변화와 기후변화를 고려한 가까운 미래의 수문환경 변화 및 이에 따른 환경유량과 하천생태계 서식처 변화를 살펴보고자 하였다.

  • PDF