• Title/Summary/Keyword: Ecosystem impacts

Search Result 226, Processing Time 0.019 seconds

Improvements in the Marine Environmental Survey on Impact of Seawater Qualities and Ecosystems due to Marine Sand Mining (바다모래 채취 시 해수 수질 및 생태계 영향에 대한 해양환경조사 개선 방안)

  • Kim, Yeong-Tae;Kim, Gui-Young;Jeon, Kyeong-Am;Eom, Ki-Hyuk;Kim, In-Chul;Choi, Bo-Ram;Kim, Hee-Jung;Kim, Jin-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.143-156
    • /
    • 2014
  • We reviewed investigation status on turbidity plume in the statement of marine environmental survey(2008 to 2012) associated with marine sand extraction projects. The survey statement from seven marine sand extraction sites (extraction area of Southern EEZ, extraction area of Western EEZ, relocation zone in the Western EEZ, sea area under jurisdiction of Taean-gun, sea area under jurisdiction of Ansan City, and two discrete sea areas under jurisdiction of Ongjin-gun) in the nearshore and offshore of Korea showed that in situ observations were carried out for the dispersion and transport of suspended sediments on two areas (One is a extraction area in the EEZs, the other is an area of coastal sites). However, sampling station and range have not been selected considering physical, geographical factors (tide, wave, stratification, water depth, etc.) and weather conditions (wind direction and velocity, fetch, duration, etc). Especially turbidity plumes originating from three sources, which include suspended sediments in overflow(or overspill) discharged from spillways and reject chutes of dredging vessel, and resuspended sediments from draghead at the seabed, may be transported to a far greater distance outside the boundary of the extraction site and have undesirable impacts on the marine environment and ecosystem. We address that behaviour of environmental pollutants such as suspended solids, nutrients, and metals should be extensively monitored and diagnosed during the dispersion and transport of the plume. Finally we suggest the necessity to supplement the current system of the sea area utilization consultation and establish the combined guidelines on marine sand extraction to collect basic data, to monitor cumulative effects, and to minimize environmental damages incurred by the aftermath of sand extraction.

Effects of Climate Change on C4 Plant List and Distribution in South Korea:A Review (기후변화에 따른 국내 C4 식물 목록과 분포 변화:고찰)

  • Kim, Myung-Hyun;Han, Min-Su;Kang, Kee-Kyung;Na, Young-Eun;Bang, Hea-Son
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.3
    • /
    • pp.123-139
    • /
    • 2011
  • It is expected that identification and lists of $C_4$ plants in specific regions are useful not only for the ecological researches that are related to vegetation phenology and succession but also as an index of climate change. In this review, $C_4$ plants growing in South Korea were listed and their life forms were investigated. In addition, we discussed the influences that climatic change and the $C_4$ plants exerted on plant ecosystem. Photosynthetic pathway types ($C_3$ and $C_4$) for the plant species in South Korea were determined by reviewing the scientific literatures published between 1971 and 2010. Of the total 4476 species in 1123 genera and 197 families, 206 species (4.6%) in 84 genera (7.5%) and 21 families (10.7%) were identified as $C_4$ plants (including $C_3$-$C_4$ intermediate plants). Among the identified $C_4$ species, 53 species (25.7%) in 26 genera and 15 families were classified as Dicotyledoneae, while 153 species (74.3%) in 58 genera and 6 families were classified as Monocotyledoneae. The majority of the $C_4$ species belong to four families: Chenopodiaceae (15 species), Amaranthaceae (13 species), Gramineae (102 speceis) and Cyperaceae (45 species). With respect to life form composition of 206 $C_4$ species, Th-$R_5$-$D_4$-t was most dominant: 95 species (46.1%) were included in Th, 123 species (59.7%) in $R_5$, 179 species (86.9%) in $D_4$, and 122 species (59.2%) in t. The projected increase in temperature due to climate change may provide better conditions for the growth of $C_4$ plants. Such a result will have considerable impacts on the interspecific competition between $C_3$ and $C_4$ plants, the distribution of $C_4$ plants, plant phenology, and plant diversity.

Effect of an Offshore Fish Culture System on the Benthic Polychaete Community (외해가두리 양식이 저서다모류군집에 미치는 영향)

  • Jung, Rae-Hong;Yoon, Sang-Pil;Kim, Youn-Jung;Lee, Won-Chan;Hong, Sok Jin;Park, Sung-Eun;Oh, Hyung Taik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.4
    • /
    • pp.195-205
    • /
    • 2013
  • Excessive input of organic matters from fish cage farming has been considered as one of the major factors disturbing benthic ecosystem, especially in semi-enclosed coastal waters. Recently offshore aquaculture in the vicinity of Jeju-do has been introduced to minimize that kind of negative impact. This study was conducted to investigate the ecological impacts of offshore aquaculture on the macrobenthic polychaete communities. A total of ten sampling works were carried out for 28 months, spanning from 10 days after starting giving feed to 3 months after stopping giving feed. During the study period, mean current velocity was quite strong with the range of 50 cm/s to 70 cm/s. TOC of surface sediment was constantly low. Significant changes in polychaete community were detected just three months after starting giving feed, which were the increase of the number of species and density at all stations. Up to 18 months after the start of farming, the amount of feed provided played an important role in the fluctuation of the number of species and density, especially at 0 m and 10 m stations. After reducing the amount of feed provided, dominance of some opportunistic species within 10 m distance from fish cages still lasted to the end of aquaculture. However, opportunistic species disappeared 3 months after the end of farming, which indicated the sign of recovery from the disturbance. From these results, the amount of food input and the period of cultivation were critical factors disturbing polychaete community and ensuing changes in this offshore and oligotrophic waters as well. In addition, study on the changes of polychaete community structure before and after fish farming showed more detailed changes in benthic ecological state than geochemical approach did.

An Analysis of Changes in Rice Growth and Growth Period Using Climatic Tables of 1960s (1931~1960) and 2000s (1971~2000) (우리나라 1960년대 (1931~'60)와 2000년대 (1971~2000) 기후표를 이용한 벼 생육 및 재배기간 변화 분석)

  • Lee, Jeong-Taek;Shim, Kyo-Moon;Bang, Hea-Son;Kim, Myung-Hyun;Kang, Kee-Kyung;Na, Young-Eun;Han, Min-Su;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.1018-1023
    • /
    • 2010
  • Climatic change was observed and analyzed in view of impacts on agricultural ecosystem, inter alia on rice cropping. The changed climate gave rise to earlier transplanting of rice seedling and later harvest after 40 years. Also phenological change and prolonged growth duration was observed. The meteorological data was selected from the standardized climatological data of 30 year normals of 1960s and 2000s, which were published by Korea Meteorological Administration. Development stages and growing periods of rice crop were compared by analyzing critical and optimum temperatures of each growth stage during these two periods. The first appearance date of $15^{\circ}C$ was ranged from Apr. 29 to May 23 in the year-normals of 1960s and it varied from Apr. 24 to May 16 in the normals of 2000s. The difference of the first appearance date of $15^{\circ}C$ was 0~10 days earlier in the year-normals of 2000s than the 1960s. The last harvesting date was determined to be the last appearance date of mean air temperature $15^{\circ}C$. The difference in the last appearance date of $15^{\circ}C$ was 1 to 13 days later in the year-normals of 2000s than in 1960s. The plant height of a rice variety, Hwayoung-byeo was 101~109 cm in 4 local areas, Seoul, Kangneung, Kwangju and Daegu. The plant height became 1~4 cm taller under warm condition. Rice grain yields estimated with daily weather data for the year-normals of 1960s and 2000s were 453~580 kg $10a^{-1}$ and 409~484 kg $10a^{-1}$ respectively. Rice grain yield of the former period was 50~100 kg $10a^{-1}$ higher than that hat in the later period.

Application of Stable Isotopic Niche Space to Large River Monitoring: Analysis of Benthic Macroinvertebrates of the Seongchon Wier (안정동위원소비를 활용한 생태지위면적 분석의 수생태계 평가 가능성 분석: 영산강 승촌보의 저서성 대형무척추동물을 대상으로)

  • Seo, Dong-Hwan;Oh, Hye-Ji;Jin, Mei-Yan;Oda, Yusuke;Kim, Hyun-Woo;Jang, Min-Ho;Choi, Bohyung;Shin, Kyung-Hoon;Lee, Kyung-Lak;Lee, Su-Woong;Chang, Kwang-Hyeon
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.685-694
    • /
    • 2018
  • We measured ecological niche space (ENS) using carbon and nitrogen stable isotope ratios of benthic macroinvertebrates to estimate its applicability for large river assessment. In particular, we compared ENSs of selected macroinvertebrates between upper and lower area of Seungchon Weir in Yeongsan River to estimate the impact of weir on biological community. We also measured basic water quality and community indices including benthic macroinvertebrates index (BMI) to estimate their correlations with calculated ENS. ENS was calculated using the Bayesian Stable Isotope in R statistics (package "SIBER"). The results showed that seasonal variations in water quality and community indices were found, but there was no apparent tendency between upper and lower area of the Seungchon Weir in June (before rainy season) and August (after rainy season). However, ENS of benthic macroinvertebrates markedly decreased across the weir in both June and August regardless of changes in water quality. This means the physical change of the stream due to the weir cause decrease of ecological isotopic niche space of benthic macroinvertebrates regardless of water quality, suggesting physical modification by the weir can affect the interaction between habitat condition and macroinvertebrates. Therefore, the ecological isotopic niche space can be a useful supplementary indicator for the river ecosystem assessment.

Impact of Fish Farming on Macrobenthic Polychaete Communities (해상 가두리 양식이 저서 다모류군집에 미치는 영향)

  • Jung, Rae-Hong;Yoon, Sang-Pil;Kwon, Jung-No;Lee, Jae-Seong;Lee, Won-Chan;Koo, Jun-Ho;Kim, Youn-Jung;Oh, Hyun-Taik;Hong, Sok-Jin;Park, Sung-Eun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.159-169
    • /
    • 2007
  • Excessive input of organic matters from fish cage farms to the coastal waters has been considered as one of the major factors disturbing their benthic ecosystem. Sediment samples were taken from around the two fish cage zones (A and B) in Tongyeong coast in June and August 2003, to evaluate the ecological impacts of fish cage farming activity on the macrobenthic polychaete communities. Polychaete accounted for $81{\sim}87%$ of the total macrofauna individuals from each of the sampling stations. The number of species, abundance, diversity and dominant species of polychaete were rapidly changed with the distance from the fish cages. Within 10 m from the fish cages, Capitella capitata, which is a bio-indicator for the highly enriched sediments, was a dominant species and the lowest diversity was recorded. In particular, the maximum density (${\sim}18,410\;ind.m^2$) of C. capitata was found at Farm A where fish cages were more densely established within a semi-enclosed bay system. The sampling zone between 10 m and 15 m showed a rapid decrease of C. capitata with a rapid increase of the numbers of species, implying that this zone may be an ecotone point from a highly to a slightly enriched area. In the sampling zone between 15 m and 60 m, a transitional zone, which represents slightly enriched condition before normal one, was observed with additional increase and maintenance of the number of species and density of polychaete. In addition, the potential bio-indicators of organic enrichment, such as Lumbrineris longifolia and Aphelochaeta monilaris were the predominant species in the sampling zone. Multidimensional scaling (MDS) ordination plots and k-dominance curves confirmed the above results on the gradual changes in the macrobenthic polychaete communities. Our findings suggest that the magnitude of impact of fish cage farming activity on polychaete communities is probably governed by a distance from fish cage, density of fish cage and geomorphological characteristics around fish cage farm.