• Title/Summary/Keyword: Ecological river

Search Result 948, Processing Time 0.029 seconds

Physicochemical water quality characteristics in relation to land use pattern and point sources in the basin of the Dongjin River and the ecological health assessments using a fish multi-metric model

  • Jang, Geon-Su;An, Kwang-Guk
    • Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.34-44
    • /
    • 2016
  • Background: Little is known about how chemical water quality is associated with ecological stream health in relation to landuse patterns in a watershed. We evaluated spatial characteristics of water quality characteristics and the ecological health of Dongjin-River basin, Korea in relation to regional landuse pattern. The ecological health was assessed by the multi-metric model of Index of Biological Integrity (IBI), and the water chemistry data were compared with values obtained from the health model. Results: Nutrient and organic matter pollution in Dongjin-River basin, Korea was influenced by land use pattern and the major point sources, so nutrients of TN and TP increased abruptly in Site 4 (Jeongeup Stream), which is directly influenced by wastewater treatment plants along with values of electric conductivity (EC), bacterial number, and sestonic chlorophyll-a. Similar results are shown in the downstream (S7) of Dongjin River. The degradation of chemical water quality in the downstream resulted in greater impairment of the ecological health, and these were also closely associated with the landuse pattern. Forest region had low nutrients (N, P), organic matter, and ionic content (as the EC), whereas urban and agricultural regions had opposite in the parameters. Linear regression analysis of the landuse (arable land; $A_L$) on chemicals indicated that values of $A_L$ had positive linear relations with TP ($R^2=0.643$, p < 0.01), TN ($R^2=0.502$, p < 0.05), BOD ($R^2=0.739$, p < 0.01), and suspended solids (SS; ($R^2=0.866$, p < 0.01), and a negative relation with TDN:TDP ratios ($R^2=0.719$, p < 0.01). Conclusions: Chemical factors were closely associated with land use pattern in the watershed, and these factors influenced the ecological health, based on the multimetric fish IBI model. Overall, the impairments of water chemistry and the ecological health in Dongjin-River basin were mainly attributes to point-sources and land-use patterns.

Spatio-temporal pattern of ecological droughts by using the Standardized Water Supply Demand Index in the Hwang River.

  • Sadiqi, Sayed Shajahan;Hong, Eun-Mi;Nam, Won-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.158-158
    • /
    • 2022
  • Ecological drought consequences have received a lot of attention in recent years. Thus, ecological drought was proposed as a new drought category to characterize the impact of drought on ecosystems. The current study used a unique drought index, the standardized supply-demand water index (SSDI), and a run theory to detect ecological drought occurrences and characteristics such as drought-affected area, drought severity, drought duration, drought frequency, and drought orientation in the Hwang River, an environmentally valuable region. Hence, to assess drought-prone areas, the bivariate probability and return period will be calculated using a two-dimensional joint copula. The core results show that (a) the Spatio-temporal characteristics of ecological drought were successfully recognized using the spatial and temporal identification approach; (b) in comparison to the SPEI meteorological drought index, the SSDI is more credible and can more readily and effectively capture the entire properties of ecological drought information; (c) the Hwang river had seen the most severe drought occurrences between the late 1990s and the mid-2020s, with 48.3 percent occurring before the twenty-first century; (d) Severe ecological drought occurrences occurred more frequently in most areas of the Hwang River (e) Only the drought duration and severity in the Hwang area were more responsive to temperature when temperatures rise around 1.1℃, the average drought duration and severity rise around 16 % and 26 %, respectively. This suggested that the Hwang River has been exposed to more severe heat stress in the twenty-first century. Thereupon droughts in the twenty-first century occurred with bigger affected regions, longer durations, higher frequency, and more intensity.

  • PDF

An initial study on ecological environment changes after emergent water transportation at lower reaches of Tarim River, China based on remote sensing technique

  • Jianli, Zhang;Lin, Li;Longjiang, Du
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.313-315
    • /
    • 2003
  • Tarim River is the longest continental river in China. Its downstream ecological environment declination and valley remedy got great concern. To improve ecological environment of lower Tarim River, “Emergent water transportation project for Tarim river valley remedy” was carried out from May 2000. Water was transported five times till May 2003. Several periods MODIS image was used to monitor water body in river channel. Two periods ETM image was used to interpreter changes of environment. Area of vegetation in 1999 was similar with 2001, but become better in total. The normalized difference vegetation index (NDVI) and vegetative coverage reflected environment changed better.

  • PDF

Application of S-HGMS and chemical coupling technology in river water treatment

  • Zhao, Xin;Li, Su-qin;Han, Shuai-shuai;Zhang, Peng;Jin, Jian-jiang;Guo, Peng-hui
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.2
    • /
    • pp.12-16
    • /
    • 2020
  • Circulating cooling systems consume a lot of water, and most of the water from river, which contains a large amount of Ca2+, Mg2+, et al, and has the characteristics of high hardness and large turbidity. The water can form scale on the surface of the heat exchanger and the pipes, which would reduce the heat transfer efficiency and affect the heat exchanger's length of service. In this study, the Superconducting High Gradient Magnetic Separation (S-HGMS) technology was used in river water treatment and the effects of agent A, agent B, and S-HGMS on the removal of hardness and turbidity were discussed. The results showed that the hardness removal rate reached 71.3% and the turbidity was decreased to 0.5 NTU.

Determination of Ecological Flow at the Confluence of Nakdong River and Gumho River Using River2D (River2D를 이용한 낙동강-금호강 합류부의 생태유량 산정)

  • Seo, Il Won;Park, Inhwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.947-956
    • /
    • 2013
  • In this study, WUA (Weighted Usable Area) was calculated to determine ecological flow at the confluence of Nakdong River and Gumho River by using River2D. To calibrate River2D, simulation results of River2D were compared with calibrated HEC-RAS simulation results and the optimum parameters were determined. After parameter calibration, WUA of Zacco platypus and Zacco temmincki which are dominant species in Nakdong River was calculated with changing upstream flowrate. From the result, WUA is changed according to flowrate and growth stage. In the flowrate-WUA/A graph, ecological flow can be determined as $33.3m^3/s{\sim}39.96m^3/s$ in Nakdong River and $3.6m^3/s{\sim}4.32m^3/s$ in Gumho River. After dredging for Four major rivers restoration project, WUA of Zacco platypus and Zacco temmincki were calculated by using the ecological flow. The results show that WUA after dredging are decreased when compared with undredged condition. WUA of Common carp is 2~3 times bigger than WUA of Zacco platypus and Zacco temmincki at the dredged condition in Nakdong River.

An Analysis of Changing River Sections Using GIS Spatial Analysis - Nonsan River - (공간분석기법을 이용한 하천단면 변화분석 - 논산천을 대상으로 -)

  • Lee, Jae-Yil;Lee, Gyu-Sung;Ha, Sung-Ryong
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.1
    • /
    • pp.91-97
    • /
    • 2010
  • The systematic data management system in the area of river flow analysis has not yet constructed, even though the need is evident due to the complicated process of tremendous input/output data in the modeling study and the importance of visualization of spatial flow variation. The objectives of this study are to suggest the method for analysis of changing river sections affecting ecological habitat characteristics. The effects of ecological habitat characteristics are assessed with respect to changing river sections. A GIS special analysis is created representing in the past section of Nonsan-river using historical data. Topographic surfaces are subject to erosional and depositional forces that a specific set of surface characteristics unique to elevation data. GIS spatial analyst is used to generate surface grids from historical point data. Using the GIS spatial analyst can be constructed sections for anywhere of river. The change of depth between 1979 and 1988, the left bank elevations of a river are increased about 1.5m. But the right bank elevations of a river are decreased about 2.3m caused by erosion. In addition, the change of spatial between 1988 and 2002, the regions of a river from upper stream to midstream are decreased the elevation. But the downstream regions are increased the elevation. These changes are analyzed in GIS program to assess methods for affecting ecological habitat.

Restoration and Landscape Ecological Design to Restore Mt. Nam in Seoul, Korea as an Ecological Park (복원 및 경관생태학적 원리에 근거한 남산의 생태공원화 계획)

  • 이창석;문정숙;김재은;조현제;이남주
    • The Korean Journal of Ecology
    • /
    • v.21 no.5_3
    • /
    • pp.723-733
    • /
    • 1998
  • Restoration to improve the ecological quality of Mt. Nam was explored in a viewpoint of restoration in both landscape and ecosystem levels. A restoration plan in landscape level was based on the result on the land-use pattern in Mt. Nam including its surrounding area and that in ecosystem level on the ecological quality of each landscape element. A plant to construct the green network, which extending from Mt. Nam to the Han river through the Yongsan family park and through the Eungbong urban park was prepared as a restoration project in landscape level to improve the ecological quality of Mt. Nam as an ecological park. On the other hand, a plan for restoration and creation of biotop as a restoration project in ecosystem level was also prepared to improve the ecological quality of each green area consisting green network. Green areas composing green network include keystone green area (Mt. Nam), green stations (Yongsan family park, Eungbong urban park, and the han river citizen's park), and green pathway (or ecological corridor) connecting those green areas.

  • PDF

A Study on the Conservaion, Rehabilitation and Creation of Naturality of Rivers : Characteristic of Ecological Land Use in the River Basin(1) (하천에 있어서 자연성의 보전, 정비 및 창출에 관한 연구 : 지역하천의 생태학적 토지이용 특성(1))

  • Lee, Haeng-Ryeol;Kim, Hun-Hui;Park, Jeong-Won
    • Proceedings of the Korean Society of Rural Planning Conference
    • /
    • 1998.03a
    • /
    • pp.25-26
    • /
    • 1998
  • This study was aimed to investigate the land use characteristics between urban and rural river systems. The ecological land unit systems was used to the key method for that objectives and the visual analysis was also used. The results were as followings : The won-sung river was characterized by the formal urban river system of which the headwater was covered with the various man-made constructions. Also the pong-se river showed a little simptoms of the urbanization from the headwater that meant the urgent ecological land use evaluation about that region.

  • PDF

Ecological Consideration for Restoration of the Degraded Urban River

  • Lee, Chang-Seok;You, Young-Han
    • 한국생태학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.113-118
    • /
    • 2002
  • Vegetation and riverine structures were compared among urban and several semi-natural rivers by applying direct gradient analysis and ordination method. Urban rivers showed different species composition from the semi-natural ones. Species composition of semi-natural rivers depended on the geographical positions, such as the upstream, midstream, and downstream and on micro-topographies, such as the waterside, flooding bed, and embankment. Semi-natural rivers showed gentle change in micro-topography, whereas urban one did not so. Our restoration plan to improve the ecological quality of the degraded urban river by imitating semi-natural river was prepared based on those data.

  • PDF

Ecological Consideration for Restoration of the Degraded Urban River

  • Lee, Chang-Seok;Yon, Young-Han
    • The Korean Journal of Ecology
    • /
    • v.25 no.4
    • /
    • pp.247-252
    • /
    • 2002
  • Vegetation and riverine structures were compared among urban and several semi-natural rivers by applying direct gradient analysis and ordination method. Urban rivers showed different species composition from the semi-natural ones. Species composition of semi-natural rivers depended on the geographical positions, such as the upstream, midstream, and downstream and on micro-topographies, such as the waterside, flooding bed, and embankment. Semi-natural rivers showed gentle change in micro-topography, whereas urban one did not so. Our restoration plan to improve the ecological quality of the degraded urban river by imitating semi-natural river was prepared based on those data.