• Title/Summary/Keyword: Ecological flow

Search Result 406, Processing Time 0.029 seconds

Assessment of Environmental Flow Impacts for the Gosam Reservoir According to Climate Change (기후변화에 따른 고삼저수지의 환경유량 영향평가)

  • Yoon, Tae Hyung;Kang, Ho Young;Kim, Jong Suk;Moon, Young Il
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.6
    • /
    • pp.93-100
    • /
    • 2016
  • This study conducted a quantitative assessment on the environmental flows associated with climate change in the Gosam Reservoir, Korea. The application of RCP 8.5 climate change scenario has found that the peak value of High Flow Pulses has increased by 36.0 % on average compared to historical data (2001 ~ 2010), which is likely to cause disadvantage on flood control and management but the increase in peak value is expected to make a positive impact on resolving the issue of green algal blooms, promoting vegetation in surrounding areas and encouraging spawning and providing habitats for native species by releasing a larger amount of landslides as well as organic matters than the past. However, the decreasing pattern of the peak value of High Flow Pulses is quite apparent with the trend of delay on the occurrence time of peak value, necessitating a long-term impact analysis. The peak value of Large Floods shows a clear sign of decrease against climate change scenario, which is expected to lead to changes in fish species caused by degraded quality of water and decreasing habitats. A quicker occurrence of Small Floods is also expected to make an impact on the growth cycle of aquatic plants, and the reduction in occurrence frequency of Extreme Low Flows is to contribute to increasing the population of and raising the survival rate of native fish, greatly improving the aquatic ecosystem. The results of this study are expected to be useful to establish the water environment and ecological system in adapting or responding to climate change.

Evaluation of Eco-Hydrological Changes in the Geum River Considering Dam Operations: I. Flow Regime Change Analysis (댐 운영을 고려한 금강의 생태.수문학적 변화 평가 : I. 유황변화 분석)

  • Ko, Ick-Hwan;Kim, Jeong-Kon;Park, Sang-Young
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • In this study, based on the major activities which might have affected the ecological system of the Geum River, a conceptual model was proposed to guide scenario development for the eco-hydrological river evaluation. Also, an analysis method employing a set of models consisting, with other supporting programs, of KModSim for watershed network analysis and RAP for ecosystem analysis was developed for eco-hydrological river assessment. Then, hydrological analyses with various scenarios were conducted to examine the flow regime changes expected from the construction and operation of the Youngdam Multipurpose Dam (YMD) and Daecheong Multipurpose Dam (DMD) in the Geum River basin. The results indicated that the "Percentile 10" values for 10% exceeding time were decreased by 20.5% and 8.0% at Sutong downstream of YMD and Gongju downstream of DMD, respectively, while "Percentile 90" values for 90% exceeding time were increased by 56.3% and 340.8% at Sutong and Gongju, respectively, resulting in the reduction of the high flow variability typical for unregulated rivers in Korea. The results of eco-hydrological analyses will be presented in the following papers.

Influence of Fish Habitats by Change of Flow Patterns with Squr Dikes (수제로 인한 흐름변화가 어류서식처에 미치는 영향 검토)

  • Chanjin Jeong;Yong Jun Kwon;Dong Hyun Kim;Hyung Suk Kim;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.109-121
    • /
    • 2023
  • Squr dikes in rivers can enhance various ecological environments, contributing to the improvement of the river's environmental functions. However, the alterations in flow caused by squr dikes not only enhance environmental functions but can also have adverse effects. Therefore, this study aimed to analyze the flow changes induced by the installation of squr dikes through flume experiments and assess their impact on fish habitats. Key factors in the fish habitat environment include flow velocity, turbulence kinetic energy, and recirculation zones. Among these, particular emphasis was placed on examining turbulence kinetic energy and recirculation zones. Experimental conditions were set by varying the interval and submergence of the squr dikes, resulting in a total of eight experimental cases. The results revealed that shorter interval and lower submergence of the squr dikes led to increased turbulence kinetic energy and recirculation zone sizes, significantly impacting fish habitats.

Ecohydraulics - the significance and research trends (생태수리학의 의의와 전망)

  • Woo, Hyoseop
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.10
    • /
    • pp.833-843
    • /
    • 2020
  • Ecohydraulics is a newly born discipline in the early 1990s by the interdisciplinary approach combined with aquatic ecology in one discipline and geomorphology, hydrology, and fluid hydrodynamics in another. Major areas of ecohydraulics can be delineated as habitat hydraulics (including environmental flow), vegetation hydraulics, eco-corridor hydraulics, eutrophication hydraulics, and ecological restoration hydraulics. Reviews of relevant international journals and literature reveal that ecohydraulics has remained in the limited areas of fish response, hydraulic modeling, and physical habitat response. It has not reached a truly interdisciplinary stage. Literature reviews in Korea reveal that only 3% of the total number of the papers listed in the Journal of KWRA during the last 24 years is related to ecohydraulics. It is about 20% of the total listed in the Journal of Ecology and Resilient Infrastructure. Most of those related to ecohydraulics in Korea concern vegetation hydraulics, habitat hydraulics, and ecological restoration hydraulics. In contrast, dynamic flow modeling areas, including turbulence, fauna motion simulation, and eutrophication hydraulics, are not found. Areas of further research in ecohydraulics in Korea may be specified as follows: 1) environmental flows adapted to the traits of the rivers in Korea, 2) development of the dynamic floodplain vegetation models (DFVM) to assess the changes from the white river to green river, 3) development of the eutrophication hydraulic model to predict the freshwater algal blooms, and 4) development of the models to evaluate the physical, chemical, and biological impacts of the stream restoration, decommissioning and removal of old weirs or small dams.

Effect on water quality and fish habitat improvement of Wonju Cheon by instream flow increasing (유지유량증가 방안에 따른 원주천 수질 및 어류서식환경 개선효과)

  • Choi, Heung Sik
    • Journal of Wetlands Research
    • /
    • v.10 no.3
    • /
    • pp.57-68
    • /
    • 2008
  • For improving water quality and hish habitat environment the targeted instream flows added to the field measurement of low flow at each reach along Wonju Cheon are calculated by depth, velocity, and the present lower channel width with considering the landscape, aquatic environment, and natural ecological function. Target instream flow increasing ranged from $0.03m^3/s$ of upstream to $0.90m^3/s$ of downstream according to the proposed depths of 0.10m to 0.30m and velocity of 0.2m/s. The methods for target instream flow increasing are base flow increasing by watershed management, non polluted discharge inflow from valley and combined sewer by sewerage system modification, and discharges from upstream reservoirs and detention basins near-by stream. The possible increasing flow rates are $0.19m^3/s$ to $3.42m^3/s$ which are 1.4 to 2.5 times of low flow to be measured which are the equivalent targeted instream flows along Wonju Cheon. The BOD-based water quality improvement are analyzed by QUAL2E. The habitat suitability indices by PHABSIM of Zacco temmincki as target species at middle stream of Wonju Cheon improve significantly by low flow increasing, which is very important to improve water quality and fish habitat.

  • PDF

Assessment of Ecological Health of the Namcheon Stream using Epilithic Diatoms (부착규조를 이용한 남천의 하천 생태 건강도 평가)

  • Jeong, Ae-Suk;Jang, Seong-Hyun;Lee, Jung-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.6
    • /
    • pp.970-979
    • /
    • 2012
  • The purpose of study was to analyze the ecological health of the Namcheon Stream using Index of Biotic Integrity(IBI) Qualitative Habitate Evaluation Index(QHEI) and Water quality condition. Diatom samples were collected from ten sampling sites in the stream at total four times in 2006 and 2007. To assess ecological health of the stream, it was used modify metrics proposed by USEPA(1999). IBI values of the stream averaged 23 which was judged as a "fair". Physical habitate evaluation analysis showed that QHEI values in the stream averaged 57 indicating a "poor" condition. Water quality condition in the stream averaged "II" indicating a "a little good" condition In conclusion, ecological health of the Namcheon Stream was "fair" condition that means habitate minimally disturb in the aquatic environment and relatively good water quality. Especially, St. 6 St. 7, St. 8, and St. 9 showed that QHEI values in the stream averaged 47 indicating a "poor" condition. St. 6 exists mostly to interfere with the flow of the river piers and artificial beams around. They are also serious disturbance at riverbed structure in aquatic ecosystems. St. 10 was good about habitate condition however, it was disturbance of aquatic ecosystems due to nutrient. It is suggest that St. 10 needs to be managed for nutrient inflows.

Characteristics of ecological structure and spatial distribution of micro-plankton in relation to water masses in the northern East China Sea(nECS) in summer 2019 (2019년 여름 동중국해 북부해역의 수괴 분포에 따른 미소플랑크톤의 공간분포 및 생태구조 특성)

  • Yoon, Yang Ho;Park, Ji Hye;Lee, Hyeon Ji;Soh, Ho Young
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.3
    • /
    • pp.355-370
    • /
    • 2020
  • We conducted a field survey to analyze the ecological structure and spatial distribution of microplankton (phytoplankton and ciliates) in relation to water masses at 21 stations on the surface and chlorophyll-a maximum layers (CML) in the Northern East China Sea (nECS; 32°-33°N; 124°00'-127°30'E) from August 3 to August 6, 2019. The results showed that the water masses were divided into Chinese Coastal Waters (CCW) and the Tsushima Warm Current (TWC). The CCW showed the environmental characteristics of high temperature and low salinity, and the TWC showed high temperature and high salinity. The characteristics of the phytoplankton community in the CCW showed various community structures related to the nutrients supplied from the large rivers of the Chinese continent. However, the TWC had simple community structures because it originated near the equator and moved northward. The standing crops of phytoplankton and ciliates were very high in the CCW but showed low at the TWC. In particular, from the higher standing crops of protozoa than plant plankton at the TWC, the energy flow at the lower tropic levels caused by the microbial loop that fed on heterotrophic bacteria played an important role in the production of resource organisms. In other words, the marine ecological structure of the nECS in summer could be estimated as a bottom-up system at the CCW and a top-down system at the TWC.

Simulating Carbon Storage Dynamics of Trees on the Artificial Ground (시뮬레이션을 통한 인공지반 교목의 탄소저장량 변화)

  • You, Soo-Jin;Song, Ki-Hwan;Park, Samuel;Kim, Se-Young;Chon, Jin-Hyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.2
    • /
    • pp.11-22
    • /
    • 2017
  • To successfully create a low-carbon landscape in order to become a low-carbon city, it is necessary to understand the dynamics of artificial greening's resources on a multi-scale. Additionally, the effects of carbon storage should be quantitatively evaluated. The purpose of this study is to simulate and evaluate the changes in carbon storages of artificial ground trees using system dynamics throughout a long-term period. The process consisted of analyzing the dynamics of the multi-scale carbon cycle by using a casual loop diagram as well as simulating carbon storage changes in the green roof of the Gangnam-gu office building in 2008, 2018, 2028, and 2038. Results of the study are as follows. First, the causal loop diagram representing the relationship between the carbon storage of the artificial ground trees and the urban carbon cycle demonstrates that the carbon storage of the trees possess mutual cross-scale dynamics. Second, the main variables for the simulation model collected 'Biomass,' 'Carbon storage,' 'Dead organic matter,' and 'Carbon absorption,'and validated a high coefficient of determination, the value being ($R^2$=0.725, p<0.05). Third, as a result of the simulation model, we found that the variation in ranking of tree species was changing over time. This study also suggested the specific species of tree-such as Acer palmatum var. amoenum, Pinus densiflora, and Betula platyphylla-are used to improve the carbon storage in the green roof of the Gangnam-gu office building. This study can help contribute to developing quantitative and scientific criteria when designing, managing, and developing programs on low-carbon landscapes.

Ecological Characteristic of Clithon retropictus inhabitating in Yeoncho River in Southern Coastal Area (남해안 연초천에 서식하는 기수갈고둥의 생태적 특성 연구)

  • Lee, Soo-Dong;Kim, Mi-Jeong;Kim, Ji-Suk
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.6
    • /
    • pp.591-602
    • /
    • 2018
  • Clithon retropictus has been designated as an endangered wildlife Class II due to its high value as a biological indicator species capable of judging environmental quality such as salinity, water flow, and ground conditions. However, basic research on its physiological and ecological characteristics is still lacking. As such, this study intended to examine the impact of environmental conditions such as salinity and soil particle size on the size and density of Clithon retropictus at the Yeoncho river estuary. The investigation of the salinity, which is a key variable that affects the distribution of organisms in the estuary, showed that Clithon retropictus could grow at a salinity ranging from 0#x2030; (freshwater) to 25‰ (brackish water). The coarse gravel (19-75mm) tended to increase nearer the upper stream (under the Yeoncho weir), while the proportion of particles smaller than sand (less than 19mm) increased toward the downstream. The population and the size of the individuals decreased rapidly in the downstream where water stagnated near the Yeoncho weir, and the salt water joined. The results indicated that Clithon retropictus had a high tolerance to salinity, but the adaptability was weaker toward the extremes since the population, and the size tended to decrease as the salinity increased. The correlation analysis revealed that both salinity and soil particle size affected the population and individual size. The correlation between the individual size and salinity was -0.242 (P <0.01), indicating that the size decreased with increasing salinity. The correlation between individual size and coarse gravel having a particle size of 19mm or more was 0.420 (P <0.01), indicating that the size increased with increasing the particle size.

Energy Flow in a Coastal Salt Marsh Ecosystem (海岸 鹽濕地 生態系의 에너지 流轉)

  • Kim, Joon-Ho;Beung Tae Ryu
    • The Korean Journal of Ecology
    • /
    • v.8 no.3
    • /
    • pp.153-161
    • /
    • 1985
  • Energy flow through the trophic levels was studied at a salt marsh ecosystem distinguished into low and high marsh. Gross primary productions of Suaedeto-Salicornietum and Artemisieto-Limonietum at low marsh were 8, 299 and 13, 154kca/$m^2$/yr, and those of Calama-grostetum and Sonchuso-Setaetum at high marsh were 17, 899 and 15, 177kca/$m^2$/yr, respectively. Efficiencies of solar energy utilization of plants were 1.7 and 2.6% at the former, and were 3.6 and 3.2% at the latter. Of gross productions, net primary productions were 3, 977 and 5, 280kca/m2/yr at low marsh and were 6, 354 and 5, 329kca/$m^2$/yr at high marsh, and the remainder, 52~67%, was consumed by respiration of plants. A small amount (0.03~0.04%) of the net primary production was flowed through grazing food chain and most amout was transferred into dead parts. Of dead parts, 40% was accuulated as litter and the rest was decomposed into detritus. In the detritus food chain, a little energy was utilized by detritus feeder, and a major by microorganism. The amounts of energy flowed through grazing and detritus feeders at high marsh were much more than those at low marsh, but tertary production as spider was Vice versa.

  • PDF