• Title/Summary/Keyword: Ecological River Restoration Project

Search Result 49, Processing Time 0.024 seconds

Stream Eco-corridor Restoration by Out-aged Small Dam Removal - Focused on Gokreung River Gokreung 2 Small Dam Removal - (기능을 상실한 보 철거를 통한 하천생태통로 복원 - 곡릉천 곡릉2보 철거를 대상으로 -)

  • Ahn, Hong Kyu;Woo, Hyoseop;Rhee, Dong Seop;Kim, Kyu Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.2
    • /
    • pp.40-54
    • /
    • 2008
  • Small and large dams are installed in the course of a stream for maintaining the water level of the stream or obtaining agricultural water. Currently about 18,000 of them are installed in Korea to supply water. However, the environmental problems of small dams are well known : the interruption of stream eco-corridors, deterioration of water quality in the upper reaches of the small dam, changes in the habitats of riparian organisms, damages to the stream scenery. In a very few of these small dams artificial eco-corridors like fishways are installed, but the number is very minimal.Accordingly, to efficiently restore stream eco-corridors by removing these small dams, it will be necessary to closely examine physical impacts, such as changes in the riverbed and changes in the shape of the stream caused by the removal, chemical impacts, such as changes in water quality, and transport and accumulation of contaminated sediments and biological impacts, such as changes in the habitats of organisms, and develop related technologies in advance, and have these technologies verified through demonstration application in the sites. In this study, we analyzed the physical, chemical and ecological impacts of the removal of the above-mentioned small dams, and conducted a research on the demonstration small dam removal project for a spot investigation. As a result, the small dam removal will restore the eco-corridor, there by improving the habitat of fishes and crustaceans. The number of major underwater organisms inhabiting the Gokreungcheon, such as Korean spotted sleepers, Chinese minnows, Microphysogobio yaluensis, Abbottina rivularis, stone morokos, striped shinners, long-nosed barbels, and Chinese mitten crabs, is expected to increase, and the food chain in the ecosystem will improve so that species diversity will improve as well.

Reference information for realizing ecological restoration of river: A case study in the Bongseonsa stream

  • Park, Sung Ae;Kim, Gyung-Soon;Pee, Jung-Hun;Oh, Woo-Seok;Kim, Hye-Soo;Lee, Chang Seok
    • Journal of Ecology and Environment
    • /
    • v.36 no.4
    • /
    • pp.235-243
    • /
    • 2013
  • In Korea, where the plain land is greatly deficient as a mountainous nation, most of riparian zones were transformed into agricultural fields and urban areas. Excessive use of the land, which is close to river, makes the rivers enduring severe pollution stresses. Disappearance of riparian buffer, which plays a function of filter in the riverside, appears as a main factor aggravating water pollution of rivers. In this respect, it is imperative to restore the lost riparian vegetation. This study found out restoration models of riparian vegetation from the Bongseonsa stream, which has remnant riparian vegetation patches as a conservation reserve. Feasible reference information applicable for restoration of riparian vegetation was shown in the species level in the order of herb, shrub, and tree and sub-tree zones as far away from the waterway. Those information could contribute to restoring integrate and healthy rivers and streams beyond simple landscaping differently from the other restoration projects when they will be applied to the restoration project to be carried out in the future. In addition, the spatial range of river and stream, background that riparian zone disappeared in Korea, and application plan of the obtained reference information were discussed.

Effects of river space restoration on biodiversity in the Mankyung river (만경강 하천공간 복원이 생물다양성에 미치는 영향)

  • Jeon, Ho-Seong;Kim, Kyuho;Hong, Il;Kim, Ji-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.spc2
    • /
    • pp.865-873
    • /
    • 2019
  • The purpose of this study is to develop and apply a river space restoration framework considering various functions of river basin system. In particular, we will present sustainable river basin management directions by quantifying the effect of improving the aquatic ecosystem through the restoration of river space. For this purpose, the present problems are derived from functional aspects of the river basin, and the river area restoration framework linked with the individual outcome indicators is constructed to evaluate the restoration effect by each function. The ecological impact of restoration of river area was quantitatively analyzed by introducing ecotope concept. As a result of the comparison of restoration effects by creating three kinds of river area restoration scenarios, the construction of suitable habitat such as backswamp in the expanded area has shown favorable results in expanding biodiversity. The diversity evaluation of ecotope in conjunction with the hydraulic and hydrological characteristics of the year will not only provide the expected effects of restoration of river space but will also serve as a criterion about post-project monitoring for outcome evaluation.

A Study on the Evaluation Method of Ecologically Fragmented Section for Restoration of the Riverine Ecobelt (수변생태벨트 구축을 위한 하천 단절구간 평가 방법에 관한 연구)

  • Kang, Hyeongsik;Lee, Young Sook;Jeon, Seung Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4B
    • /
    • pp.383-391
    • /
    • 2011
  • In this study, an evaluation method was proposed to determine the restoration section in the riverine ecobelt project. The target river for this study is the Hongcheon river in Kangwon-do. The Hongcheon river of 96 km was divided longitudinally into subsections of 2 km. The analysis through map and aerial photograph as well as field surveys were performed in 48-sub-sections. The fragmentation items were classified into connectivity and ecological functionality. The connectivity fragmentation was also divided into two items: the area discontinuity of the land use and the line discontinuity of river bank and road. Also, the ecological functional fragmentation was evaluated by using the items of river channel, river bed, vegetation, and the obstruction of river flow. These items was modified from those in the previous literature. From map analyses and field surveys, the fragmentation score was kept with each items in 48 sub-sections of Hongcheon river. The fragmentation rate was made from the total score in each section. The results showed that sections from F1 to G2 was evaluated to have high rates of all connectivity and functionality fragmentation of 1st or 2nd rate. Other sections have high connectivity fragmentation of 2nd rate, but low functional fragmentation. Thus, these sections are evaluated to be excludible in restoration site. This study seems to make a contribution to evaluate the fragmented sections for the riverine ecobelt project.

The process of capture and translocation during habitat restoration construction of Kaloula borealis - A Case Study of Samcheon Ecological River Restoration, Jeonju City - (맹꽁이 서식지 복원공사 중 포획 및 이주과정에 대한 연구 -전주시 삼천 생태하천 복원사업을 대상으로-)

  • Lim, Hyun-Jeong;Kim, Jong-Man;Jeong, Moon-Sun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.2
    • /
    • pp.103-114
    • /
    • 2021
  • The purpose of this study is to provide basic data for habitat restoration by implementing a series of processes of capturing and translocating Kaloula borealis and managing them in artificial breeding facilities. The study site in Samcheon, Jeonju-si, Jeollabuk-do was a waste landfill site in the past, and Kaloula borealis was found during the Samcheon Ecological River Restoration Project around March 2018. To restore the habitat, a plan was established to capture, translocate, artificially breed, and release Kaloula borealis at the site. The capture methods of adult Kaloula borealis were pitfall trap and drift fence, direct capture, and deep barrels. During 2018-2019, 86 adults of Kaloula borealis were captured and translocated to artificial breeding facilities. VIE-tagging was inserted under the skin for monitoring. For artificial breeding, Gryllus bimaculatus with oyster powder and vegetables were regularly supplied to feed Kaloula borealis. At the end of October 2020, 150 young Kaloula borealis raised in artificial breeding facilities were found not entering hibernation, so they were managed in a separate artificial breeding facility. Some young and adult Kaloula borealis currently hibernating will be scheduled to be continuously managed in artificial breeding facilities and released to the restored habitat in the spring of 2021.

New Classification Criteria and Database Code of Water Environment for Nature-Friendly River Work and Integrated Management of Watershed (자연친화적 하천사업 및 통합적 유역 관리를 위한 새로운 수환경 분류법 및 자료관리 프로그램의 개발)

  • Noguchi, Masato;Kang, Sang Hyeok;Kim, Joon Hyun;Nishida, Wataru;Fujisaki, Nobuhito
    • Journal of Environmental Impact Assessment
    • /
    • v.7 no.2
    • /
    • pp.103-112
    • /
    • 1998
  • Nature-friendly river project has became common practice in Japan. In order to make it available for the conservation and rehabilitation of desirable water environment, water criteria for water environmental assessment must be established. Especially, the criteria estimating the effects on ecosystem in and around river should be constructed. In this paper, classification method for water quality has been developed using biological indices and applied to observed data in Honmyo River, Nagasaki, Japan. Modified PI method (BI') has been suggested and those of three most abundant species resulted effective estimate for an overall water quality with comparatively simple procedure. Extensive database management code was prepared for the comprehensive ecological monitoring of river basin, which includes various biota. That system enables easy access of all the ecological data for a dissemination of a sound and sustainable water environment. The result of this study could improve knowledge base, serve making consensus for citizens, and help river management plans. In Japan, citizen's realization and action are the most critical factor for nature-friendly river restoration project.

  • PDF

Changes in Water Quality, Flora and Vegetation of Cheonggye Stream Before, During and After its Restoration (청계천 복원공사 전.중.후의 수질과 식물 및 식생의 변화)

  • Kim Hyea-Ju;Kim Sung-Hwan;Kim Song-Yee
    • Korean Journal of Environment and Ecology
    • /
    • v.20 no.2
    • /
    • pp.235-258
    • /
    • 2006
  • The monitoring of vegetation and water quality before(2003), during(2004) and after(2005) the restoration work of Cheonggye Stream indicated that $BOD_5$ concentration before the project averaged 51.1mg/L and that both the inflow of water from Hang River and the funnel of subway station water into the stream lowered the $BOD_5$ to 3.3mg/L, improving its water quality to the third grade. Species of plants slightly increased from 121 to 132 after the restoration. Specifically, perennial plant comprised 35.6%, an increase from 24.8% recorded before the restoration. Phragmites communis and Zoysia japonica communities were observed as the introduction vegetation. However, Humulus japonicus and Erigeron canadensis communities, which were classified into the first grade according to the vegetation conservation classification, were found to be still prevailing though they were dominant community before the restoration, meaning that the ecological condition of plants had not changed very significantly. An the other hand the water quality of the reference reach was classified into the first grade based on $BOD_5$, which implies the water quality of the section was better than the project reaches. Besides the section had more diverse plant species which numbered 154, and furthermore, the rate of immigrated plants comprised 13% which was lower than 28.8% recorded by the project sections. The project reaches are considered to be inferior to the reference section in terms of ecological condition. The effectiveness of the stream restoration cannot be determined only by such short-term investigation as was conducted in this study, and it is considered that the effectiveness of the restoration of Cheonggye Stream can be determined only if investigations in other major factors are conducted over the long-term period.

The Management Plan for the Ecological Waterfront Space of Muan Changpo Lake (무안 창포호의 자연생태친수공간 조성을 위한 관리방안 기초 연구)

  • Seo, Jung-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.3
    • /
    • pp.15-30
    • /
    • 2019
  • Changpo Lake was created as a part of a land reclamation for refugee self-helping projects. It shows characteristics of a fresh water lake, and still retains the early appearance of reclamation that surrounding regions have not been developed into farm lands. Shallow wetland has formed around the lake, which provides great conditions for diverse lives, and surrounding earthiness is favorable for growth of vegetation and restoration of the ecosystem. However, as facilities of the Muan International Airport nearby Changpo Lake are expanding and barns are being constructed, artificialness is gradually increasing. Particularly, since pollution sources such as sport facilities, farm lands and barns are scattered around Changpo Lake, pollutants are flowing in constantly. Accordingly, the results for setting up management areas according to the spatial characteristics and creating natural ecological spaces near Changpo Lake, Taebongcheon stream and Hakgyecheon stream are as follows. First, the creation of a natural eco-friendly waterfront space should be promoted by securing the health of the aquatic ecosystem and restoring species and the ecosystem. In addition, a consultative body needs to be formed to lead local residents to participating in river investigation and monitoring, maintenance, and management through role sharing. Second, the basic direction of the spatial management plan is to keep the unique charm of Changpo Lake, maintain harmony with nature, create diverse waterfront areas, and secure the continuity of Changpo Lake and inflow streams. Moreover, the area should be divided into three zones such as a conservation zone, a restoration zone and a waterfront zone, and for each zone, the preservation of vegetation, the creation of ecological wetlands and restoration of the ecotone and ecological nature need to be promoted. Third, facilities and activity programs for each space of Changpo Lake should be operated for efficient management of protected areas. In order to suit the status of each space, biological habitats, water purification spaces, experiential and learning spaces, and convenience and rest spaces should be organized and designated as research, monitoring, education, and tourism areas. Accordingly, points of interest should be set up within the corresponding area. In this study, there are many parts that need to be supplemented for immediate implementation since the detailed plans and project costs for the promotion of programs by area are not calculated. Therefore, it is necessary to make detailed project plans and consider related projects such as water quality, restoration of habitats, nature learning and observation, and experience of ecological environments based on the categories such as research, monitoring, education and tourism in the future.

Mistakes Made, Lessons Learned: The Eulsukdo Wetland Restoration Program

  • Lineman, Maurice J.M.;Do, Yuno;Kim, Ji-Yoon;Joo, Gea-Jae
    • Journal of Environmental Science International
    • /
    • v.23 no.8
    • /
    • pp.1523-1536
    • /
    • 2014
  • Restoration is the process of reducing or reversing damage to an ecosystem so that it can function in its original manner. However, many restoration programs do not achieve this. In the Nakdong Estuary, the largest migratory nesting site in the center of the East Asian-Australasian flyway, an estuarine barrage was constructed in the 1980s that required site restoration following its completion in 1987 and the expansion of several large industrial complexes(Noksan and Jangrim) and a residential development(Myeongji). The goal of the restoration was to restore the function of the wetland to its pre-disturbance state. To achieve this, a restoration program was designed consisting of three stages. The first stage(1993-1995), saw the construction of three artificial wetlands(Shinhori, Daemadeung, and Eulsuk), the second(2003-2005) involved the dredging and returning of farmed lands to their natural state, and the third(2008-2012) focused on the rehabilitation and vegetation development of the wetlands. However, the project has not achieved all of the desired goals, and it is an example of the lapses in ecological restoration following anthropogenic disturbance. Issues that resulted in an incomplete restoration included the timing of the stages, noncompliance with the restoration plan, not directly monitoring the restoration or continuing the monitoring following completion of the development project, and the political subversion of the restoration plan. For the success of the restoration plan, it is necessary to avoid mistakes such as inconsistent monitoring, unequal levels of stakeholder involvement, and political interference.

Determination of Ecological Flow at the Confluence of Nakdong River and Gumho River Using River2D (River2D를 이용한 낙동강-금호강 합류부의 생태유량 산정)

  • Seo, Il Won;Park, Inhwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.947-956
    • /
    • 2013
  • In this study, WUA (Weighted Usable Area) was calculated to determine ecological flow at the confluence of Nakdong River and Gumho River by using River2D. To calibrate River2D, simulation results of River2D were compared with calibrated HEC-RAS simulation results and the optimum parameters were determined. After parameter calibration, WUA of Zacco platypus and Zacco temmincki which are dominant species in Nakdong River was calculated with changing upstream flowrate. From the result, WUA is changed according to flowrate and growth stage. In the flowrate-WUA/A graph, ecological flow can be determined as $33.3m^3/s{\sim}39.96m^3/s$ in Nakdong River and $3.6m^3/s{\sim}4.32m^3/s$ in Gumho River. After dredging for Four major rivers restoration project, WUA of Zacco platypus and Zacco temmincki were calculated by using the ecological flow. The results show that WUA after dredging are decreased when compared with undredged condition. WUA of Common carp is 2~3 times bigger than WUA of Zacco platypus and Zacco temmincki at the dredged condition in Nakdong River.